# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Magic basis rounding module"""
from __future__ import annotations
from collections import defaultdict
import numpy as np
from qiskit import QuantumCircuit
from qiskit.primitives import BaseSampler
from qiskit.quantum_info import SparsePauliOp
from qiskit_algorithms.exceptions import AlgorithmError
from qiskit_optimization.algorithms import OptimizationResultStatus, SolutionSample
from qiskit_optimization.exceptions import QiskitOptimizationError
from .quantum_random_access_encoding import (
_z_to_21p_qrac_basis_circuit,
_z_to_31p_qrac_basis_circuit,
)
from .rounding_common import RoundingContext, RoundingResult, RoundingScheme
[ドキュメント]class MagicRounding(RoundingScheme):
"""Magic rounding scheme that measures in magic bases, and then uses the measurement results
to round the solution. Since the magic rounding is based on the measurement results, it
requires a quantum backend, which can be either hardware or a simulator.
The details are described in https://arxiv.org/abs/2111.03167.
"""
_DECODING = {
3: ( # Eq. (8)
{"0": [0, 0, 0], "1": [1, 1, 1]}, # I mu+ I, I mu- I
{"0": [0, 1, 1], "1": [1, 0, 0]}, # X mu+ X, X mu- X
{"0": [1, 0, 1], "1": [0, 1, 0]}, # Y mu+ Y, Y mu- Y
{"0": [1, 1, 0], "1": [0, 0, 1]}, # Z mu+ Z, Z mu- Z
),
2: ( # Sec. VII
{"0": [0, 0], "1": [1, 1]}, # I xi+ I, I xi- I
{"0": [0, 1], "1": [1, 0]}, # X xi+ X, X xi- X
),
1: ({"0": [0], "1": [1]},),
}
# Pauli op string to label index in ops
_OP_INDICES = {1: {"Z": 0}, 2: {"X": 0, "Z": 1}, 3: {"X": 0, "Y": 1, "Z": 2}}
def __init__(
self,
sampler: BaseSampler,
basis_sampling: str = "uniform",
seed: int | None = None,
):
"""
Args:
sampler: Sampler to use for sampling the magic bases.
basis_sampling: Method to use for sampling the magic bases. Must
be either ``"uniform"`` (default) or ``"weighted"``.
``"uniform"`` samples all magic bases uniformly, and is the
method described in https://arxiv.org/abs/2111.03167.
``"weighted"`` attempts to choose bases strategically using the
Pauli expectation values from the minimum eigensolver.
However, the approximation bounds given in
https://arxiv.org/abs/2111.03167 apply only to ``"uniform"``
sampling.
seed: Seed for random number generator, which is used to sample the
magic bases.
Raises:
ValueError: If ``basis_sampling`` is not ``"uniform"`` or ``"weighted"``.
ValueError: If the sampler is not configured with a number of shots.
"""
if basis_sampling not in ("uniform", "weighted"):
raise ValueError(
f"'{basis_sampling}' is not an implemented sampling method. "
"Please choose either 'uniform' or 'weighted'."
)
self._sampler = sampler
self._rng = np.random.default_rng(seed)
self._basis_sampling = basis_sampling
if self._sampler.options.get("shots") is None:
raise ValueError("Magic rounding requires a sampler configured with a number of shots.")
self._shots = sampler.options.shots
super().__init__()
@property
def sampler(self) -> BaseSampler:
"""Returns the Sampler used to sample the magic bases."""
return self._sampler
@property
def basis_sampling(self):
"""Basis sampling method (either ``"uniform"`` or ``"weighted"``)."""
return self._basis_sampling
@staticmethod
def _make_circuits(
circuit: QuantumCircuit, bases: np.ndarray, vars_per_qubit: int
) -> list[QuantumCircuit]:
"""Make a list of circuits to measure in the given magic bases.
Args:
circuit: Quantum circuit to measure.
bases: List of magic bases to measure in.
vars_per_qubit: Number of variables per qubit.
Returns:
List of quantum circuits to measure in the given magic bases.
Raises:
ValueError: If ``vars_per_qubit`` is not 1, 2, or 3.
"""
if vars_per_qubit not in (1, 2, 3):
raise ValueError("vars_per_qubit must be 1, 2, or 3.")
circuits = []
for basis in bases:
if vars_per_qubit == 3:
qc = circuit.compose(_z_to_31p_qrac_basis_circuit(basis).inverse(), inplace=False)
elif vars_per_qubit == 2:
qc = circuit.compose(_z_to_21p_qrac_basis_circuit(basis).inverse(), inplace=False)
elif vars_per_qubit == 1:
qc = circuit.copy()
qc.measure_all()
circuits.append(qc)
return circuits
def _evaluate_magic_bases(
self,
circuit: QuantumCircuit,
bases: np.ndarray,
basis_shots: np.ndarray,
vars_per_qubit: int,
) -> list[dict[str, int]]:
"""
Given a quantum circuit to measure, a list of magic bases to measure, and a list of the
shots to use for each magic basis configuration, measure the provided circuit in the magic
bases given and return the counts dictionaries associated with each basis measurement.
Args:
circuit: The quantum circuit to measure.
bases: A list of magic bases to measure.
basis_shots: A list of shots to use for each magic basis configuration.
vars_per_qubit: The number of decision variables per qubit.
Returns:
A list of counts dictionaries associated with each basis measurement.
Raises:
AlgorithmError: If the primitive job failed.
QiskitOptimizationError: If the number of circuits and the number of basis types are
not the same.
QiskitOptimizationError: If the number of circuits and the results from the primitive
job are not the same.
QiskitOptimizationError: If some of the results from the primitive job are not collected.
"""
circuits = self._make_circuits(circuit, bases, vars_per_qubit)
# Execute each of the rotated circuits and collect the results
# Batch the circuits into jobs where each group has the same number of
# shots, so that you can wait for the queue as few times as possible if
# using hardware.
circuit_indices_by_shots: dict[int, list[int]] = defaultdict(list)
basis_counts: list[dict[str, int] | None] = [None] * len(circuits)
if len(circuits) != len(basis_shots):
raise QiskitOptimizationError(
"Internal error: The number of circuits and the number of basis types must be the same, "
f"{len(circuits)} != {len(basis_shots)}."
)
for i, shots in enumerate(basis_shots):
circuit_indices_by_shots[shots].append(i)
for shots, indices in sorted(circuit_indices_by_shots.items(), reverse=True):
try:
job = self._sampler.run([circuits[i] for i in indices], shots=shots)
result = job.result()
except Exception as exc:
raise AlgorithmError(
"The primitive job to evaluate the magic state failed."
) from exc
counts_list = [dist.binary_probabilities() for dist in result.quasi_dists]
if len(counts_list) != len(indices):
raise QiskitOptimizationError(
"Internal error: The number of circuits and the results from the primitive job "
f"must be the same, {len(indices)} != {len(counts_list)}."
)
for i, counts in zip(indices, counts_list):
basis_counts[i] = counts
if None in basis_counts:
raise QiskitOptimizationError(
"Internal error: Some basis counts were not collected. Please check the primitive job."
)
basis_counts = [
{key: val * basis_shots[i] for key, val in counts.items()}
for i, counts in enumerate(basis_counts)
]
return basis_counts
def _unpack_measurement_outcome(
self,
bits: str,
basis: list[int],
var2op: dict[int, tuple[int, SparsePauliOp]],
vars_per_qubit: int,
) -> list[int]:
"""
Given a measurement outcome, a magic basis, and a mapping from decision variables to
Pauli operators, return the values of the decision variables.
Args:
bits: The measurement outcome.
basis: The magic basis used for the measurement.
var2op: A mapping from decision variables to Pauli operators.
vars_per_qubit: The number of decision variables per qubit.
Returns:
The values of the decision variables.
"""
output_bits = []
# iterate in order over decision variables
for q, op in var2op.values():
# get the decoding outcome index for the variable
# corresponding to this Pauli op.
op_index = self._OP_INDICES[vars_per_qubit][str(op.paulis[0])]
# get the bits associated to this magic basis'
# measurement outcomes
bit_outcomes = self._DECODING[vars_per_qubit][basis[q]]
# select which measurement outcome we observed
# this gives up to 3 bits of information
magic_bits = bit_outcomes[bits[q]]
# Assign our variable's value depending on
# which pauli our variable was associated to
variable_value = magic_bits[op_index]
output_bits.append(variable_value)
return output_bits
def _compute_dv_counts(
self,
basis_counts: list[dict[str, int]],
bases: np.ndarray,
var2op: dict[int, tuple[int, SparsePauliOp]],
vars_per_qubit: int,
):
"""
Given a list of bases, basis_shots, and basis_counts, convert
each observed bitstrings to its corresponding decision variable
configuration. Return the counts of each decision variable configuration.
Args:
basis_counts: A list of counts dictionaries associated with each basis measurement.
bases: A list of magic bases to measure.
var2op: A mapping from decision variables to Pauli operators.
vars_per_qubit: The number of decision variables per qubit.
Returns:
A dictionary of counts for each decision variable configuration.
"""
dv_counts: dict[str, int] = defaultdict(int)
for base, counts in zip(bases, basis_counts):
# For each measurement outcome...
for bitstr, count in counts.items():
# For each bit in the observed bit string...
soln = self._unpack_measurement_outcome(bitstr, base, var2op, vars_per_qubit)
soln_str = "".join([str(bit) for bit in soln])
dv_counts[soln_str] += count
return dv_counts
def _sample_bases_uniform(
self, q2vars: list[list[int]], vars_per_qubit: int
) -> tuple[np.ndarray, np.ndarray]:
"""
Sample measurement bases for each qubit uniformly at random.
Args:
q2vars: A list of lists of integers. Each inner list contains the indices of decision
variables mapped to a specific qubit.
vars_per_qubit: The maximum number of decision variables that can be mapped to a
single qubit..
Returns:
A tuple containing two arrays:
bases: A 2D numpy array of shape (num_bases, num_qubits), where each row
corresponds to a basis configuration. Each element of the array is an
integer in the range [0, 2 ** (vars_per_qubit - 1) - 1]. The integer
represents the index of the basis to measure in for the corresponding
qubit.
basis_shots: A 1D numpy array of shape (num_bases,), where each element
corresponds to the number of shots to use for the corresponding basis in
the bases array.
"""
bases_ = self._rng.choice(2 ** (vars_per_qubit - 1), size=(self._shots, len(q2vars)))
bases, basis_shots = np.unique(bases_, axis=0, return_counts=True)
return bases, basis_shots
def _sample_bases_weighted(
self, q2vars: list[list[int]], expectation_values: list[complex] | None, vars_per_qubit: int
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform weighted sampling from the expectation values. The goal is to make smarter choices
about which bases to measure in using the expectation values.
Args:
q2vars: A list of lists of integers. Each inner list contains the indices of decision
variables mapped to a specific qubit.
expectation_values: A list of expectation values for each decision variable.
vars_per_qubit: The maximum number of decision variables that can be mapped to a
single qubit.
Returns:
A tuple containing two arrays:
bases: A 2D numpy array of shape (num_bases, num_qubits), where each row
corresponds to a basis configuration. Each element of the array is an
integer in the range [0, 2 ** (vars_per_qubit - 1) - 1]. The integer
represents the index of the basis to measure in for the corresponding
qubit.
basis_shots: A 1D numpy array of shape (num_bases,), where each element
corresponds to the number of shots to use for the corresponding basis in
the bases array.
"""
# First, we make sure all Pauli expectation values have absolute value
# at most 1. Otherwise, some of the probabilities computed below might
# be negative.
clipped_expectation_values = np.clip(expectation_values, -1, 1)
# basis_probs will have num_qubits number of elements.
# Each element will be a list of length 4 specifying the
# probability of picking the corresponding magic basis on that qubit.
basis_probs = []
for dvars in q2vars:
if vars_per_qubit == 3:
x = 0.5 * (1 - clipped_expectation_values[dvars[0]])
y = 0.5 * (1 - clipped_expectation_values[dvars[1]]) if (len(dvars) > 1) else 0
z = 0.5 * (1 - clipped_expectation_values[dvars[2]]) if (len(dvars) > 2) else 0
# In the coefficient of the Pauli operator within the magic bases, 'p' represents a
# positive sign, while 'm' signifies a negative sign.
# The four combinations of these signs are used to define the quantum system behavior
# in the context of magic bases.
# ppp: mu± = .5(I ± 1/sqrt(3)( X + Y + Z))
# pmm: X mu± X = .5(I ± 1/sqrt(3)( X - Y - Z))
# mpm: Y mu± Y = .5(I ± 1/sqrt(3)(-X + Y - Z))
# mmp: Z mu± Z = .5(I ± 1/sqrt(3)(-X - Y + Z))
# fmt: off
ppp_mmm = x * y * z + (1-x) * (1-y) * (1-z)
pmm_mpp = x * (1-y) * (1-z) + (1-x) * y * z
mpm_pmp = (1-x) * y * (1-z) + x * (1-y) * z
ppm_mmp = x * y * (1-z) + (1-x) * (1-y) * z
# fmt: on
basis_probs.append([ppp_mmm, pmm_mpp, mpm_pmp, ppm_mmp])
elif vars_per_qubit == 2:
x = 0.5 * (1 - clipped_expectation_values[dvars[0]])
z = 0.5 * (1 - clipped_expectation_values[dvars[1]]) if (len(dvars) > 1) else 0
# In the coefficient of the Pauli operator within the magic bases, 'p' represents a
# positive sign, while 'm' signifies a negative sign.
# The two combinations of these signs are used to define the quantum system behavior
# in the context of magic bases.
# pp: xi± = .5(I ± 1/sqrt(2)( X + Z ))
# pm: X xi± X = .5(I ± 1/sqrt(2)( X - Z ))
# fmt: off
pp_mm = x * z + (1-x) * (1-z)
pm_mp = x * (1-z) + (1-x) * z
# fmt: on
basis_probs.append([pp_mm, pm_mp])
elif vars_per_qubit == 1:
basis_probs.append([1.0])
bases_ = np.array(
[
self._rng.choice(
2 ** (vars_per_qubit - 1), p=[p.real for p in probs], size=self._shots
)
for probs in basis_probs
]
).T
bases, basis_shots = np.unique(bases_, axis=0, return_counts=True)
return bases, basis_shots
[ドキュメント] def round(self, rounding_context: RoundingContext) -> RoundingResult:
"""Perform magic rounding using the given RoundingContext.
Args:
rounding_context: The context containing the information needed for the rounding.
Returns:
RoundingResult: The results of the magic rounding process.
Raises:
ValueError: If the rounding context has no circuits.
ValueError: If the rounding context has no expectation values for magic rounding with the
weighted sampling.
QiskitOptimizationError: If the magic rounding did not return the expected number of shots.
QiskitOptimizationError: If the magic rounding did not return the expected number of bases.
"""
expectation_values = rounding_context.expectation_values
circuit = rounding_context.circuit
q2vars = rounding_context.encoding.q2vars
var2op = rounding_context.encoding.var2op
vars_per_qubit = rounding_context.encoding.max_vars_per_qubit
if circuit is None:
raise ValueError(
"No circuit was provided in the rounding context. "
"Magic rounding requires a circuit to be available. "
"Perhaps try Semi-deterministic rounding instead."
)
if self.basis_sampling == "uniform":
# uniform sampling
bases, basis_shots = self._sample_bases_uniform(q2vars, vars_per_qubit)
else:
# weighted sampling
if expectation_values is None:
raise ValueError(
"No expectation values were provided in the rounding context. "
"Magic rounding with weighted sampling requires the expectation values of the "
"``RoundingContext`` to be available, but they are not. "
'Try `basis_sampling="uniform"` instead.'
)
bases, basis_shots = self._sample_bases_weighted(
q2vars, expectation_values, vars_per_qubit
)
# For each of the Magic Bases sampled above, measure
# the appropriate number of times (given by basis_shots)
# and return the circuit results
basis_counts = self._evaluate_magic_bases(circuit, bases, basis_shots, vars_per_qubit)
# keys will be configurations of decision variables
# values will be total number of observations.
soln_counts = self._compute_dv_counts(basis_counts, bases, var2op, vars_per_qubit)
soln_samples = [
SolutionSample(
x=np.asarray([int(bit) for bit in soln]),
fval=rounding_context.encoding.problem.objective.evaluate(
[int(bit) for bit in soln]
),
probability=count / self._shots,
status=OptimizationResultStatus.SUCCESS
if rounding_context.encoding.problem.is_feasible([int(bit) for bit in soln])
else OptimizationResultStatus.INFEASIBLE,
)
for soln, count in soln_counts.items()
]
if sum(soln_counts.values()) != self._shots:
raise QiskitOptimizationError(
f"Internal error: Magic rounding did not return the expected number of shots. "
f"Expected {self._shots}, got {sum(soln_counts.values())}."
)
if not len(bases) == len(basis_shots) == len(basis_counts):
raise QiskitOptimizationError(
f"Internal error: sizes of bases({len(bases)}), basis_shots({len(basis_shots)}), "
f"and basis_counts({len(basis_counts)}) are not equal."
)
# Create a MagicRoundingResult object to return
return RoundingResult(
expectation_values=expectation_values,
samples=soln_samples,
bases=bases,
basis_shots=basis_shots,
basis_counts=basis_counts,
)