索引 A | B | C | D | E | F | G | I | K | L | M | N | O | P | Q | R | S | T | U | V | W A ad_hoc_data() (qiskit_machine_learning.datasets モジュール) add_note() (QiskitMachineLearningError のメソッド) ansatz (QNNCircuit の属性) (VQC の属性) (VQR の属性) assign_training_parameters() (TrainableFidelityQuantumKernel のメソッド) (TrainableFidelityStatevectorKernel のメソッド) (TrainableKernel のメソッド) B backward() (EstimatorQNN のメソッド) (NeuralNetwork のメソッド) (SamplerQNN のメソッド) BaseKernel (qiskit_machine_learning.kernels のクラス) BinaryObjectiveFunction (qiskit_machine_learning.algorithms のクラス) C callback (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) circuit (EstimatorQNN の属性) (SamplerQNN の属性) (VQC の属性) class_weight_ (QSVR の属性) clear_cache() (FidelityStatevectorKernel のメソッド) (TrainableFidelityStatevectorKernel のメソッド) coef_ (QSVC の属性) (QSVR の属性) combine() (QuantumKernelTrainerResult のメソッド) CrossEntropyLoss (qiskit_machine_learning.utils.loss_functions のクラス) D decision_function() (PegasosQSVC のメソッド) (QSVC のメソッド) E EffectiveDimension (qiskit_machine_learning.neural_networks のクラス) enforce_psd (BaseKernel の属性) (FidelityQuantumKernel の属性) (FidelityStatevectorKernel の属性) (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) estimator (EstimatorQNN の属性) EstimatorQNN (qiskit_machine_learning.neural_networks のクラス) evaluate() (BaseKernel のメソッド) (CrossEntropyLoss のメソッド) (FidelityQuantumKernel のメソッド) (FidelityStatevectorKernel のメソッド) (KernelLoss のメソッド) (L1Loss のメソッド) (L2Loss のメソッド) (Loss のメソッド) (SVCLoss のメソッド) (TrainableFidelityQuantumKernel のメソッド) (TrainableFidelityStatevectorKernel のメソッド) (TrainableKernel のメソッド) evaluate_duplicates (FidelityQuantumKernel の属性) (TrainableFidelityQuantumKernel の属性) F feature_dimension (RawFeatureVector の属性) feature_map (BaseKernel の属性) (FidelityQuantumKernel の属性) (FidelityStatevectorKernel の属性) (QNNCircuit の属性) (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) (VQC の属性) (VQR の属性) fidelity (FidelityQuantumKernel の属性) (TrainableFidelityQuantumKernel の属性) FidelityQuantumKernel (qiskit_machine_learning.kernels のクラス) FidelityStatevectorKernel (qiskit_machine_learning.kernels のクラス) fit() (NeuralNetworkClassifier のメソッド) (NeuralNetworkRegressor のメソッド) (PegasosQSVC のメソッド) (QSVC のメソッド) (QSVR のメソッド) (QuantumKernelTrainer のメソッド) (TrainableModel のメソッド) (VQC のメソッド) (VQR のメソッド) fit_result (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) FITTED (PegasosQSVC の属性) forward() (EstimatorQNN のメソッド) (NeuralNetwork のメソッド) (SamplerQNN のメソッド) (TorchConnector のメソッド) G get_effective_dimension() (EffectiveDimension のメソッド) (LocalEffectiveDimension のメソッド) get_fisher_information() (EffectiveDimension のメソッド) (LocalEffectiveDimension のメソッド) get_metadata_routing() (QSVC のメソッド) (QSVR のメソッド) get_normalized_fisher() (EffectiveDimension のメソッド) (LocalEffectiveDimension のメソッド) get_params() (QSVC のメソッド) (QSVR のメソッド) gradient (EstimatorQNN の属性) (SamplerQNN の属性) gradient() (BinaryObjectiveFunction のメソッド) (CrossEntropyLoss のメソッド) (L1Loss のメソッド) (L2Loss のメソッド) (Loss のメソッド) (MultiClassObjectiveFunction のメソッド) (ObjectiveFunction のメソッド) (OneHotObjectiveFunction のメソッド) I initial_point (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (QuantumKernelTrainer の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) input_gradients (EstimatorQNN の属性) (NeuralNetwork の属性) (SamplerQNN の属性) input_parameters (QNNCircuit の属性) input_params (EstimatorQNN の属性) (SamplerQNN の属性) input_samples (EffectiveDimension の属性) (LocalEffectiveDimension の属性) interpret (SamplerQNN の属性) K KernelLoss (qiskit_machine_learning.utils.loss_functions のクラス) L L1Loss (qiskit_machine_learning.utils.loss_functions のクラス) L2Loss (qiskit_machine_learning.utils.loss_functions のクラス) load() (NeuralNetworkClassifier のクラスメソッド) (NeuralNetworkRegressor のクラスメソッド) (PegasosQSVC のクラスメソッド) (QSVC のクラスメソッド) (QSVR のクラスメソッド) (SerializableModelMixin のクラスメソッド) (TrainableModel のクラスメソッド) (VQC のクラスメソッド) (VQR のクラスメソッド) LocalEffectiveDimension (qiskit_machine_learning.neural_networks のクラス) loss (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) Loss (qiskit_machine_learning.utils.loss_functions のクラス) loss (QuantumKernelTrainer の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) M module qiskit_machine_learning qiskit_machine_learning.algorithms qiskit_machine_learning.circuit.library qiskit_machine_learning.connectors qiskit_machine_learning.datasets qiskit_machine_learning.kernels qiskit_machine_learning.kernels.algorithms qiskit_machine_learning.neural_networks qiskit_machine_learning.utils qiskit_machine_learning.utils.loss_functions MultiClassObjectiveFunction (qiskit_machine_learning.algorithms のクラス) N n_support_ (QSVC の属性) (QSVR の属性) neural_network (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (TorchConnector の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) NeuralNetwork (qiskit_machine_learning.neural_networks のクラス) NeuralNetworkClassifier (qiskit_machine_learning.algorithms のクラス) NeuralNetworkRegressor (qiskit_machine_learning.algorithms のクラス) num_classes (NeuralNetworkClassifier の属性) (VQC の属性) num_features (BaseKernel の属性) (FidelityQuantumKernel の属性) (FidelityStatevectorKernel の属性) (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) num_input_parameters (QNNCircuit の属性) num_inputs (EstimatorQNN の属性) (NeuralNetwork の属性) (SamplerQNN の属性) num_qubits (QNNCircuit の属性) (RawFeatureVector の属性) (VQC の属性) (VQR の属性) num_steps (PegasosQSVC の属性) num_training_parameters (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) num_weight_parameters (QNNCircuit の属性) num_weights (EstimatorQNN の属性) (NeuralNetwork の属性) (SamplerQNN の属性) O objective() (BinaryObjectiveFunction のメソッド) (MultiClassObjectiveFunction のメソッド) (ObjectiveFunction のメソッド) (OneHotObjectiveFunction のメソッド) ObjectiveFunction (qiskit_machine_learning.algorithms のクラス) observables (EstimatorQNN の属性) OneHotObjectiveFunction (qiskit_machine_learning.algorithms のクラス) optimal_circuit (QuantumKernelTrainerResult の属性) optimal_parameters (QuantumKernelTrainerResult の属性) optimal_point (QuantumKernelTrainerResult の属性) optimal_value (QuantumKernelTrainerResult の属性) optimizer (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (QuantumKernelTrainer の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) optimizer_evals (QuantumKernelTrainerResult の属性) optimizer_result (QuantumKernelTrainerResult の属性) optimizer_time (QuantumKernelTrainerResult の属性) output_shape (EstimatorQNN の属性) (NeuralNetwork の属性) (SamplerQNN の属性) P parameter_values (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) PegasosQSVC (qiskit_machine_learning.algorithms のクラス) precomputed (PegasosQSVC の属性) predict() (NeuralNetworkClassifier のメソッド) (NeuralNetworkRegressor のメソッド) (PegasosQSVC のメソッド) (QSVC のメソッド) (QSVR のメソッド) (TrainableModel のメソッド) (VQC のメソッド) (VQR のメソッド) predict_log_proba() (QSVC のメソッド) predict_proba() (QSVC のメソッド) probA_ (QSVC の属性) probB_ (QSVC の属性) Q qiskit_machine_learning module qiskit_machine_learning.algorithms module qiskit_machine_learning.circuit.library module qiskit_machine_learning.connectors module qiskit_machine_learning.datasets module qiskit_machine_learning.kernels module qiskit_machine_learning.kernels.algorithms module qiskit_machine_learning.neural_networks module qiskit_machine_learning.utils module qiskit_machine_learning.utils.loss_functions module QiskitMachineLearningError QNNCircuit (qiskit_machine_learning.circuit.library のクラス) QSVC (qiskit_machine_learning.algorithms のクラス) QSVR (qiskit_machine_learning.algorithms のクラス) quantum_kernel (PegasosQSVC の属性) (QSVC の属性) (QSVR の属性) (QuantumKernelTrainer の属性) (QuantumKernelTrainerResult の属性) QuantumKernelTrainer (qiskit_machine_learning.kernels.algorithms のクラス) QuantumKernelTrainerResult (qiskit_machine_learning.kernels.algorithms のクラス) R RawFeatureVector (qiskit_machine_learning.circuit.library のクラス) run_monte_carlo() (EffectiveDimension のメソッド) (LocalEffectiveDimension のメソッド) S sampler (SamplerQNN の属性) SamplerQNN (qiskit_machine_learning.neural_networks のクラス) save() (NeuralNetworkClassifier のメソッド) (NeuralNetworkRegressor のメソッド) (PegasosQSVC のメソッド) (QSVC のメソッド) (QSVR のメソッド) (SerializableModelMixin のメソッド) (TrainableModel のメソッド) (VQC のメソッド) (VQR のメソッド) score() (NeuralNetworkClassifier のメソッド) (NeuralNetworkRegressor のメソッド) (PegasosQSVC のメソッド) (QSVC のメソッド) (QSVR のメソッド) (TrainableModel のメソッド) (VQC のメソッド) (VQR のメソッド) SerializableModelMixin (qiskit_machine_learning.algorithms のクラス) set_fit_request() (QSVC のメソッド) (QSVR のメソッド) set_interpret() (SamplerQNN のメソッド) set_params() (QSVC のメソッド) (QSVR のメソッド) set_score_request() (QSVC のメソッド) (QSVR のメソッド) sparse (EstimatorQNN の属性) (NeuralNetwork の属性) (SamplerQNN の属性) (TorchConnector の属性) SVCLoss (qiskit_machine_learning.utils.loss_functions のクラス) T TorchConnector (qiskit_machine_learning.connectors のクラス) TrainableFidelityQuantumKernel (qiskit_machine_learning.kernels のクラス) TrainableFidelityStatevectorKernel (qiskit_machine_learning.kernels のクラス) TrainableKernel (qiskit_machine_learning.kernels のクラス) TrainableModel (qiskit_machine_learning.algorithms のクラス) training_parameters (TrainableFidelityQuantumKernel の属性) (TrainableFidelityStatevectorKernel の属性) (TrainableKernel の属性) U UNFITTED (PegasosQSVC の属性) unused_param (QSVC の属性) (QSVR の属性) V VQC (qiskit_machine_learning.algorithms のクラス) VQR (qiskit_machine_learning.algorithms のクラス) W warm_start (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) weight (TorchConnector の属性) weight_parameters (QNNCircuit の属性) weight_params (EstimatorQNN の属性) (SamplerQNN の属性) weight_samples (EffectiveDimension の属性) (LocalEffectiveDimension の属性) weights (NeuralNetworkClassifier の属性) (NeuralNetworkRegressor の属性) (TrainableModel の属性) (VQC の属性) (VQR の属性) with_traceback() (QiskitMachineLearningError のメソッド)