Source code for qiskit_machine_learning.utils.loss_functions.loss_functions

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" Loss utilities """

from abc import ABC, abstractmethod

import numpy as np

from ...exceptions import QiskitMachineLearningError


[docs] class Loss(ABC): """ Abstract base class for computing Loss. """ def __call__(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: """ This method calls the ``evaluate`` method. This is a convenient method to compute loss. """ return self.evaluate(predict, target)
[docs] @abstractmethod def evaluate(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: """ An abstract method for evaluating the loss function. Inputs are expected in a shape of ``(N, *)``. Where ``N`` is a number of samples. Loss is computed for each sample individually. Args: predict: an array of predicted values using the model. target: an array of the true values. Returns: An array with values of the loss function of the shape ``(N, 1)``. Raises: QiskitMachineLearningError: shapes of predict and target do not match """ raise NotImplementedError
@staticmethod def _validate_shapes(predict: np.ndarray, target: np.ndarray) -> None: """ Validates that shapes of both parameters are identical. Args: predict: an array of predicted values using the model target: an array of the true values Raises: QiskitMachineLearningError: shapes of predict and target do not match. """ if predict.shape != target.shape: raise QiskitMachineLearningError( f"Shapes don't match, predict: {predict.shape}, target: {target.shape}!" )
[docs] @abstractmethod def gradient(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: """ An abstract method for computing the gradient. Inputs are expected in a shape of ``(N, *)``. Where ``N`` is a number of samples. Gradient is computed for each sample individually. Args: predict: an array of predicted values using the model. target: an array of the true values. Returns: An array with gradient values of the shape ``(N, *)``. The output shape depends on the loss function. Raises: QiskitMachineLearningError: shapes of predict and target do not match. """ raise NotImplementedError
[docs] class L1Loss(Loss): r""" This class computes the L1 loss (i.e. absolute error) for each sample as: .. math:: \text{L1Loss}(predict, target) = \sum_{i=0}^{N_{\text{elements}}} \left| predict_i - target_i \right|. """
[docs] def evaluate(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: self._validate_shapes(predict, target) if len(predict.shape) <= 1: return np.abs(predict - target) else: return np.linalg.norm(predict - target, ord=1, axis=tuple(range(1, len(predict.shape))))
[docs] def gradient(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: self._validate_shapes(predict, target) return np.sign(predict - target)
[docs] class L2Loss(Loss): r""" This class computes the L2 loss (i.e. squared error) for each sample as: .. math:: \text{L2Loss}(predict, target) = \sum_{i=0}^{N_{\text{elements}}} (predict_i - target_i)^2. """
[docs] def evaluate(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: self._validate_shapes(predict, target) if len(predict.shape) <= 1: return (predict - target) ** 2 else: return np.linalg.norm(predict - target, axis=tuple(range(1, len(predict.shape)))) ** 2
[docs] def gradient(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: self._validate_shapes(predict, target) return 2 * (predict - target)
[docs] class CrossEntropyLoss(Loss): r""" This class computes the cross entropy loss for each sample as: .. math:: \text{CrossEntropyLoss}(predict, target) = -\sum_{i=0}^{N_{\text{classes}}} target_i * log(predict_i). """
[docs] def evaluate(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: self._validate_shapes(predict, target) if len(predict.shape) == 1: predict = predict.reshape(1, -1) target = target.reshape(1, -1) # multiply target and log(predict) matrices row by row and sum up each row # into a single float, so the output is of shape(N,), where N number or samples. # then reshape # before taking the log we clip the predicted probabilities at a small positive number. This # ensures that in cases where a class is predicted to have 0 probability we don't get `nan`. val = -np.einsum( "ij,ij->i", target, np.log2(np.clip(predict, a_min=1e-10, a_max=None)) ).reshape(-1, 1) return val
[docs] def gradient(self, predict: np.ndarray, target: np.ndarray) -> np.ndarray: """Assume softmax is used, and target vector may or may not be one-hot encoding""" self._validate_shapes(predict, target) if len(predict.shape) == 1: predict = predict.reshape(1, -1) target = target.reshape(1, -1) # sum up target along rows, then multiply predict by this sum element wise, # then subtract target grad = np.einsum("ij,i->ij", predict, np.sum(target, axis=1)) - target return grad