Optimizer¶
- class Optimizer[source]¶
Bases:
ABC
Base class for optimization algorithm.
Initialize the optimization algorithm, setting the support level for _gradient_support_level, _bound_support_level, _initial_point_support_level, and empty options.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
The optimizer settings in a dictionary format.
The settings can for instance be used for JSON-serialization (if all settings are serializable, which e.g. doesn’t hold per default for callables), such that the optimizer object can be reconstructed as
settings = optimizer.settings # JSON serialize and send to another server optimizer = OptimizerClass(**settings)
Methods
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)[source]¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- abstract minimize(fun, x0, jac=None, bounds=None)[source]¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- set_options(**kwargs)[source]¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.