POWELL¶
- class POWELL(maxiter=None, maxfev=1000, disp=False, xtol=0.0001, tol=None, options=None, **kwargs)[source]¶
Bases:
SciPyOptimizer
Powell optimizer.
The Powell algorithm performs unconstrained optimization; it ignores bounds or constraints. Powell is a conjugate direction method: it performs sequential one-dimensional minimization along each directional vector, which is updated at each iteration of the main minimization loop. The function being minimized need not be differentiable, and no derivatives are taken.
Uses scipy.optimize.minimize Powell. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters:
maxiter (int | None) – Maximum allowed number of iterations. If both maxiter and maxfev are set, minimization will stop at the first reached.
maxfev (int) – Maximum allowed number of function evaluations. If both maxiter and maxfev are set, minimization will stop at the first reached.
disp (bool) – Set to True to print convergence messages.
xtol (float) – Relative error in solution xopt acceptable for convergence.
tol (float | None) – Tolerance for termination.
options (dict | None) – A dictionary of solver options.
kwargs – additional kwargs for scipy.optimize.minimize.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
Methods
- get_support_level()¶
Return support level dictionary
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()¶
Print algorithm-specific options.
- set_max_evals_grouped(limit)¶
Set max evals grouped
- set_options(**kwargs)¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.