EffectiveDimension¶
- class EffectiveDimension(qnn, weight_samples=1, input_samples=1)[source]¶
Bases:
object
This class computes the global effective dimension for a Qiskit
NeuralNetwork
following the definition used in [1].References [1]: Abbas et al., The power of quantum neural networks. The power of QNNs.
- Parameters:
qnn (NeuralNetwork) – A Qiskit
NeuralNetwork
, with a specific dimension(num_weights)
that will determine the shape of the Fisher Information Matrix(num_input_samples * num_weight_samples, num_weights, num_weights)
used to compute the global effective dimension for a set ofinput_samples
, of shape(num_input_samples, qnn_input_size)
, andweight_samples
, of shape(num_weight_samples, num_weights)
.weight_samples (ndarray | int) – An array of neural network parameters (weights), of shape
(num_weight_samples, num_weights)
, or anint
to indicate the number of parameter sets to sample randomly from a uniform distribution. By default,weight_samples = 1
.input_samples (ndarray | int) – An array of samples to the neural network, of shape
(num_input_samples, qnn_input_size)
, or anint
to indicate the number of input sets to sample randomly from a normal distribution. By default,input_samples = 1
.
Attributes
- input_samples¶
Returns network input samples.
- weight_samples¶
Returns network weight samples.
Methods
- get_effective_dimension(dataset_size)[source]¶
This method computes the effective dimension for a dataset of size
dataset_size
. If an array is passed, then effective dimension computed for each value in the array.
- get_fisher_information(gradients, model_outputs)[source]¶
This method computes the average Jacobian for every set of gradients and model output as shown in Abbas et al.
- Parameters:
gradients (ndarray) – A numpy array, result of the neural network’s backward pass, of shape
(num_input_samples * num_weight_samples, output_size, num_weights)
.model_outputs (ndarray) – A numpy array, result of the neural networks’ forward pass, of shape
(num_input_samples * num_weight_samples, output_size)
.
- Returns:
- A numpy array of shape
(num_input_samples * num_weight_samples, num_weights, num_weights)
with the average Jacobian for every set of gradients and model output given.
- Return type:
fisher
- get_normalized_fisher(normalized_fisher)[source]¶
This method computes the normalized Fisher Information Matrix and extracts its trace.
- Parameters:
normalized_fisher (ndarray) – The Fisher Information Matrix to be normalized.
- Returns:
- The normalized Fisher Information Matrix, a numpy array of size
(num_input_samples, num_weights, num_weights)
.- fisher_trace: The trace of the Fisher Information Matrix
(before normalizing).
- Return type:
normalized_fisher
- run_monte_carlo()[source]¶
This method computes the model’s Monte Carlo sampling for a set of input samples and weight samples.
- Returns:
- QNN gradient vector, result of backward passes, of shape
(num_input_samples * num_weight_samples, output_size, num_weights)
.- outputs: QNN output vector, result of forward passes, of shape
(num_input_samples * num_weight_samples, output_size)
.
- Return type:
grads