SLSQP¶
- class SLSQP(maxiter=100, disp=False, ftol=1e-06, tol=None, eps=1.4901161193847656e-08, options=None, max_evals_grouped=1, **kwargs)[source]¶
Bases:
SciPyOptimizer
Sequential Least SQuares Programming optimizer.
SLSQP minimizes a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft.
SLSQP is ideal for mathematical problems for which the objective function and the constraints are twice continuously differentiable. Note that the wrapper handles infinite values in bounds by converting them into large floating values.
Uses scipy.optimize.minimize SLSQP. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters:
maxiter (int) – Maximum number of iterations.
disp (bool) – Set to True to print convergence messages.
ftol (float) – Precision goal for the value of f in the stopping criterion.
tol (float | None) – Tolerance for termination.
eps (float) – Step size used for numerical approximation of the Jacobian.
options (dict | None) – A dictionary of solver options.
max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
kwargs – additional kwargs for scipy.optimize.minimize.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
Methods
- get_support_level()¶
Return support level dictionary
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()¶
Print algorithm-specific options.
- set_max_evals_grouped(limit)¶
Set max evals grouped
- set_options(**kwargs)¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.