L_BFGS_B¶
- class L_BFGS_B(maxfun=15000, maxiter=15000, ftol=np.float64(2.220446049250313e-15), iprint=-1, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)[source]¶
Bases:
SciPyOptimizer
Limited-memory BFGS Bound optimizer.
The target goal of Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-BFGS-B) is to minimize the value of a differentiable scalar function
. This optimizer is a quasi-Newton method, meaning that, in contrast to Newtons’s method, it does not require ’s Hessian (the matrix of ’s second derivatives) when attempting to compute ’s minimum value.Like BFGS, L-BFGS is an iterative method for solving unconstrained, non-linear optimization problems, but approximates BFGS using a limited amount of computer memory. L-BFGS starts with an initial estimate of the optimal value, and proceeds iteratively to refine that estimate with a sequence of better estimates.
The derivatives of
are used to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of . L-BFGS-B extends L-BFGS to handle simple, per-variable bound constraints.Uses
scipy.optimize.fmin_l_bfgs_b
. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html- Parameters:
maxfun (int) – Maximum number of function evaluations.
maxiter (int) – Maximum number of iterations.
ftol (SupportsFloat) – The iteration stops when
.iprint (int) – Controls the frequency of output.
iprint < 0
means no output;iprint = 0
print only one line at the last iteration;0 < iprint < 99
print also and every iprint iterations;iprint = 99
print details of every iteration except n-vectors;iprint = 100
print also the changes of active set and final ;iprint > 100
print details of every iteration including and .eps (float) – If jac is approximated, use this value for the step size.
options (dict | None) – A dictionary of solver options.
max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
kwargs – additional kwargs for
scipy.optimize.minimize
.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
Methods
- get_support_level()¶
Return support level dictionary
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()¶
Print algorithm-specific options.
- set_max_evals_grouped(limit)¶
Set max evals grouped
- set_options(**kwargs)¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.