AQGD

class AQGD(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10, max_evals_grouped=1)[source]

Bases: Optimizer

Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parameterized quantum gates, i.e. Pauli Rotations. See, for example:

  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745

  • Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184

for further details on analytic gradients of parameterized quantum gates.

Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.

Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.

Parameters:
  • maxiter (int | list[int]) – Maximum number of iterations (full gradient steps)

  • eta (float | list[float]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv

  • tol (float) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.

  • momentum (float | list[float]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)

  • param_tol (float) – Tolerance for change in norm of parameters.

  • averaging (int) – Length of window over which to average objective values for objective convergence criterion

  • max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.

Raises:

AlgorithmError – If the length of maxiter, momentum`, and eta is not the same.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Methods

get_support_level()[source]

Support level dictionary

Returns:

gradient, bounds and initial point

support information that is ignored/required.

Return type:

Dict[str, int]

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters:
  • x_center (ndarray) – point around which we compute the gradient

  • f (func) – the function of which the gradient is to be computed.

  • epsilon (float) – the epsilon used in the numeric differentiation.

  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns:

the gradient computed

Return type:

grad

minimize(fun, x0, jac=None, bounds=None)[source]

Minimize the scalar function.

Parameters:
Returns:

The result of the optimization, containing e.g. the result as attribute x.

Return type:

OptimizerResult

print_options()

Print algorithm-specific options.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters:

kwargs (dict) – options, given as name=value.

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters:
  • function (func) – the target function

  • args (tuple) – the args to be injected

Returns:

wrapper

Return type:

function_wrapper