AQGD¶
- class AQGD(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10, max_evals_grouped=1)[source]¶
Bases:
Optimizer
Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parameterized quantum gates, i.e. Pauli Rotations. See, for example:
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184
for further details on analytic gradients of parameterized quantum gates.
Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.
Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
- Parameters:
maxiter (int | list[int]) – Maximum number of iterations (full gradient steps)
eta (float | list[float]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv
tol (float) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.
momentum (float | list[float]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)
param_tol (float) – Tolerance for change in norm of parameters.
averaging (int) – Length of window over which to average objective values for objective convergence criterion
max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
- Raises:
AlgorithmError – If the length of
maxiter
, momentum`, andeta
is not the same.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
Methods
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)[source]¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()¶
Print algorithm-specific options.
- set_max_evals_grouped(limit)¶
Set max evals grouped
- set_options(**kwargs)¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.