Source code for qiskit_machine_learning.gradients.lin_comb.lin_comb_estimator_gradient

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Gradient of probabilities with linear combination of unitaries (LCU)
"""
from __future__ import annotations

from collections.abc import Sequence

import numpy as np

from qiskit.circuit import Parameter, QuantumCircuit
from qiskit.primitives.base import BaseEstimatorV2
from qiskit.primitives import BaseEstimator, BaseEstimatorV1
from qiskit.transpiler.passmanager import BasePassManager

from qiskit.primitives.utils import init_observable, _circuit_key
from qiskit.providers import Options
from qiskit.quantum_info.operators.base_operator import BaseOperator

from ..base.base_estimator_gradient import BaseEstimatorGradient
from ..base.estimator_gradient_result import EstimatorGradientResult
from ..utils import DerivativeType, _make_lin_comb_gradient_circuit, _make_lin_comb_observables

from ...exceptions import AlgorithmError


[docs] class LinCombEstimatorGradient(BaseEstimatorGradient): """Compute the gradients of the expectation values. This method employs a linear combination of unitaries [1]. **Reference:** [1] Schuld et al., Evaluating analytic gradients on quantum hardware, 2018 `arXiv:1811.11184 <https://arxiv.org/pdf/1811.11184.pdf>`_ """ SUPPORTED_GATES = [ "rx", "ry", "rz", "rzx", "rzz", "ryy", "rxx", "cx", "cy", "cz", "ccx", "swap", "iswap", "h", "t", "s", "sdg", "x", "y", "z", ] def __init__( self, estimator: BaseEstimator, derivative_type: DerivativeType = DerivativeType.REAL, options: Options | None = None, pass_manager: BasePassManager | None = None, ): r""" Args: estimator: The estimator used to compute the gradients. derivative_type: The type of derivative. Can be either ``DerivativeType.REAL`` ``DerivativeType.IMAG``, or ``DerivativeType.COMPLEX``. Defaults to ``DerivativeType.REAL``. - ``DerivativeType.REAL`` computes :math:`2 \mathrm{Re}[⟨ψ(ω)|O(θ)|dω ψ(ω)〉]`. - ``DerivativeType.IMAG`` computes :math:`2 \mathrm{Im}[⟨ψ(ω)|O(θ)|dω ψ(ω)〉]`. - ``DerivativeType.COMPLEX`` computes :math:`2 ⟨ψ(ω)|O(θ)|dω ψ(ω)〉`. options: Primitive backend runtime options used for circuit execution. The order of priority is: options in ``run`` method > gradient's default options > primitive's default setting. Higher priority setting overrides lower priority setting. pass_manager: The pass manager to transpile the circuits if necessary. Defaults to ``None``, as some primitives do not need transpiled circuits. """ self._lin_comb_cache: dict[tuple, dict[Parameter, QuantumCircuit]] = {} super().__init__( estimator, options=options, derivative_type=derivative_type, pass_manager=pass_manager ) @BaseEstimatorGradient.derivative_type.setter # type: ignore[attr-defined] def derivative_type(self, derivative_type: DerivativeType) -> None: """Set the derivative type.""" self._derivative_type = derivative_type def _run( self, circuits: Sequence[QuantumCircuit], observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]] | np.ndarray, parameters: Sequence[Sequence[Parameter]], **options, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) results = self._run_unique( g_circuits, observables, g_parameter_values, g_parameters, **options ) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( self, circuits: Sequence[QuantumCircuit], observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], **options, ) -> EstimatorGradientResult: # pragma: no cover """Compute the estimator gradients on the given circuits.""" job_circuits, job_observables, job_param_values, metadata = [], [], [], [] all_n = [] for circuit, observable, parameter_values_, parameters_ in zip( circuits, observables, parameter_values, parameters ): # Prepare circuits for the gradient of the specified parameters. meta = {"parameters": parameters_} circuit_key = _circuit_key(circuit) if circuit_key not in self._lin_comb_cache: # Cache the circuits for the linear combination of unitaries. # We only cache the circuits for the specified parameters in the future. self._lin_comb_cache[circuit_key] = _make_lin_comb_gradient_circuit( circuit, add_measurement=False ) lin_comb_circuits = self._lin_comb_cache[circuit_key] gradient_circuits = [] for param in parameters_: gradient_circuits.append(lin_comb_circuits[param]) n = len(gradient_circuits) # Make the observable as :class:`~qiskit.quantum_info.SparsePauliOp` and # add an ancillary operator to compute the gradient. observable = init_observable(observable) observable_1, observable_2 = _make_lin_comb_observables( observable, self._derivative_type ) # If its derivative type is `DerivativeType.COMPLEX`, calculate the gradient # of the real and imaginary parts separately. meta["derivative_type"] = self.derivative_type metadata.append(meta) # Combine inputs into a single job to reduce overhead. if self._derivative_type == DerivativeType.COMPLEX: job_circuits.extend(gradient_circuits * 2) job_observables.extend([observable_1] * n + [observable_2] * n) job_param_values.extend([parameter_values_] * 2 * n) all_n.append(2 * n) else: job_circuits.extend(gradient_circuits) job_observables.extend([observable_1] * n) job_param_values.extend([parameter_values_] * n) all_n.append(n) if isinstance(self._estimator, BaseEstimatorV1): # Run the single job with all circuits. job = self._estimator.run( job_circuits, job_observables, job_param_values, **options, ) try: results = job.result() except Exception as exc: raise AlgorithmError("Estimator job failed.") from exc # Compute the gradients. gradients = [] partial_sum_n = 0 for n in all_n: # this disable is needed as Pylint does not understand derivative_type is a property if # it is only defined in the base class and the getter is in the child # pylint: disable=comparison-with-callable if self.derivative_type == DerivativeType.COMPLEX: gradient = np.zeros(n // 2, dtype="complex") gradient.real = results.values[partial_sum_n : partial_sum_n + n // 2] gradient.imag = results.values[partial_sum_n + n // 2 : partial_sum_n + n] else: gradient = np.real(results.values[partial_sum_n : partial_sum_n + n]) partial_sum_n += n gradients.append(gradient) opt = self._get_local_options(options) elif isinstance(self._estimator, BaseEstimatorV2): if self._pass_manager is None: circs = job_circuits observables = job_observables else: circs = self._pass_manager.run(job_circuits) observables = [ op.apply_layout(circs[i].layout) for i, op in enumerate(job_observables) ] # Prepare circuit-observable-parameter tuples (PUBs) circuit_observable_params = [] for pub in zip(circs, observables, job_param_values): circuit_observable_params.append(pub) # For BaseEstimatorV2, run the estimator using PUBs and specified precision job = self._estimator.run(circuit_observable_params) try: results = job.result() except Exception as exc: raise AlgorithmError("Estimator job failed.") from exc results = np.array([float(r.data.evs) for r in results]) opt = Options(**options) # Compute the gradients. gradients = [] partial_sum_n = 0 for n in all_n: # this disable is needed as Pylint does not understand derivative_type is a property if # it is only defined in the base class and the getter is in the child # pylint: disable=comparison-with-callable if self.derivative_type == DerivativeType.COMPLEX: gradient = np.zeros(n // 2, dtype="complex") gradient.real = results[partial_sum_n : partial_sum_n + n // 2] gradient.imag = results[partial_sum_n + n // 2 : partial_sum_n + n] else: gradient = np.real(results[partial_sum_n : partial_sum_n + n]) partial_sum_n += n gradients.append(gradient) else: raise AlgorithmError( "The accepted estimators are BaseEstimatorV1 and BaseEstimatorV2; got " + f"{type(self._estimator)} instead. Note that BaseEstimatorV1 is deprecated in" + "Qiskit and removed in Qiskit IBM Runtime." ) return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt)