Source code for qiskit_experiments.library.calibration.frequency_cal

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Ramsey XY frequency calibration experiment."""

from typing import Dict, List, Optional, Sequence

from qiskit.circuit import QuantumCircuit
from qiskit.providers.backend import Backend

from qiskit_experiments.framework import ExperimentData
from qiskit_experiments.library.characterization.ramsey_xy import RamseyXY
from qiskit_experiments.calibration_management.calibrations import Calibrations
from qiskit_experiments.calibration_management.update_library import BaseUpdater
from qiskit_experiments.calibration_management.base_calibration_experiment import (
    BaseCalibrationExperiment,
)


[docs] class FrequencyCal(BaseCalibrationExperiment, RamseyXY): """A qubit frequency calibration experiment based on the Ramsey XY experiment. # section: example .. jupyter-execute:: :hide-code: import warnings warnings.filterwarnings("ignore", ".*Could not determine job completion time.*", UserWarning) # backend from qiskit_ibm_runtime.fake_provider import FakePerth from qiskit_aer import AerSimulator backend = AerSimulator.from_backend(FakePerth()) .. jupyter-execute:: from qiskit_experiments.calibration_management.calibrations import Calibrations from qiskit_experiments.calibration_management.basis_gate_library \ import FixedFrequencyTransmon from qiskit_experiments.library.calibration.frequency_cal import FrequencyCal cals = Calibrations.from_backend(backend=backend, libraries=[FixedFrequencyTransmon()]) exp_cal = FrequencyCal((0,), cals, backend=backend, auto_update=False) cal_data=exp_cal.run().block_for_results() display(cal_data.figure(0)) cal_data.analysis_results(dataframe=True) """ def __init__( self, physical_qubits: Sequence[int], calibrations: Calibrations, backend: Optional[Backend] = None, cal_parameter_name: Optional[str] = "drive_freq", delays: Optional[List] = None, osc_freq: float = 2e6, auto_update: bool = True, ): """ Args: physical_qubits: Sequence containing the qubit on which to run the frequency calibration. calibrations: The calibrations instance with the schedules. backend: Optional, the backend to run the experiment on. cal_parameter_name: The name of the parameter to update in the calibrations. This defaults to `drive_freq`. delays: The list of delays that will be scanned in the experiment, in seconds. osc_freq: A frequency shift in Hz that will be applied by means of a virtual Z rotation to increase the frequency of the measured oscillation. auto_update: If set to True, which is the default, then the experiment will automatically update the frequency in the calibrations. """ super().__init__( calibrations, physical_qubits, backend=backend, delays=delays, osc_freq=osc_freq, cal_parameter_name=cal_parameter_name, auto_update=auto_update, ) def _metadata(self) -> Dict[str, any]: """Add the oscillation frequency of the experiment to the metadata.""" metadata = super()._metadata() metadata["osc_freq"] = self.experiment_options.osc_freq metadata["cal_param_value"] = self._cals.get_parameter_value( self._param_name, self.physical_qubits, group=self.experiment_options.group, ) return metadata def _attach_calibrations(self, circuit: QuantumCircuit): """Adds the calibrations to the transpiled circuits.""" schedule = self._cals.get_schedule("sx", self.physical_qubits) circuit.add_calibration("sx", self.physical_qubits, schedule)
[docs] def update_calibrations(self, experiment_data: ExperimentData): """Update the frequency using the reported frequency less the imparted oscillation.""" result_index = self.experiment_options.result_index osc_freq = experiment_data.metadata["osc_freq"] group = experiment_data.metadata["cal_group"] old_freq = experiment_data.metadata["cal_param_value"] fit_freq = BaseUpdater.get_value(experiment_data, "freq", result_index) new_freq = old_freq + fit_freq - osc_freq BaseUpdater.add_parameter_value( self._cals, experiment_data, new_freq, self._param_name, group=group, )