Note

This is the documentation for the current state of the development branch of Qiskit Experiments. The documentation or APIs here can change prior to being released.

FineAmplitude

class FineAmplitude(physical_qubits, gate, backend=None, measurement_qubits=None)[source]

An experiment to determine the optimal pulse amplitude by amplifying gate errors.

Overview

The FineAmplitude experiment repeats N times a gate with a pulse to amplify the under-/over-rotations in the gate to determine the optimal amplitude. The circuits are therefore of the form:

           ┌──────┐       ┌──────┐ ░ ┌─┐
      q_0: ┤ Gate ├─ ... ─┤ Gate ├─░─┤M├
           └──────┘       └──────┘ ░ └╥┘
measure: 1/═════════ ... ═════════════╩═
                                      0

Here, Gate is the name of the gate which will be repeated. The user can optionally add a square-root of X pulse before the gates are repeated. This square-root of X pulse allows the analysis to differentiate between over rotations and under rotations in the case of \(\pi\)-pulses. Importantly, the resulting data is analyzed by a fit to a cosine function in which we try to determine the over/under rotation given an intended rotation angle per gate which must also be specified by the user.

Error amplifying experiments are most sensitive to angle errors when we measure points along the equator of the Bloch sphere. This is why users should insert a square-root of X pulse before running calibrations for \(\pm\pi\) rotations. When all data points are close to the equator, it is difficult for a fitter to infer the overall scale of the error. When calibrating a \(\pi\) rotation, one can use add_xp_circuit = True to insert one circuit that puts the qubit in the excited state to set the scale for the other circuits. Furthermore, when running calibrations for \(\pm\pi/2\) rotations users are advised to use an odd number of repetitions, e.g. [1, 2, 3, 5, 7, …] to ensure that the ideal points are on the equator of the Bloch sphere. Note the presence of two repetitions which allows us to prepare the excited state. Therefore, add_xp_circuit = True is not needed in this case.

References

[1] Sarah Sheldon, Lev S. Bishop, Easwar Magesan, Stefan Filipp, Jerry M. Chow, Jay M. Gambetta, Characterizing errors on qubit operations via iterative randomized benchmarking, Phys. Rev. A 93, 012301 (2016), doi: 10.1103/PhysRevA.93.012301 (open)

User manual

Fine calibrations of a pulse amplitude

Analysis class reference

FineAmplitudeAnalysis

Experiment options

These options can be set by the set_experiment_options() method.

Options
  • Defined in the class FineAmplitude:

    • repetitions (List[int])

      Default value: [1, 2, 3, 4, 5, …]
      A list of the number of times that the gate is repeated.
    • gate (Gate)

      Default value: None
      This is a gate class such as XGate, so that one can obtain a gate by doing options.gate().
    • normalization (bool)

      Default value: True
      If set to True the DataProcessor will normalized the measured signal to the interval [0, 1]. Defaults to True.
    • add_cal_circuits (bool)

      Default value: True
      If set to True then two circuits to calibrate 0 and 1 points will be added. These circuits are often needed to properly calibrate the amplitude of the ping-pong oscillation that encodes the errors. This helps account for state preparation and measurement errors.
  • Defined in the class BaseExperiment:

    • max_circuits (Optional[int])

      Default value: None
      The maximum number of circuits per job when running an experiment on a backend.

Example

import numpy as np
from qiskit.circuit.library import XGate
from qiskit_experiments.library import FineAmplitude

exp = FineAmplitude(physical_qubits=(0,), gate=XGate(), backend=backend)
exp.analysis.set_options(fixed_parameters={"angle_per_gate" : np.pi, "phase_offset" : np.pi})

exp_data = exp.run().block_for_results()
display(exp_data.figure(0))
exp_data.analysis_results(dataframe=True)
../_images/qiskit_experiments.library.characterization.FineAmplitude_1_0.png
name experiment components value quality backend run_time chisq
7092b608 @Parameters_FineAmplitudeAnalysis FineAmplitude [Q0] CurveFitResult:\n - fitting method: least_squa... good PulseBackendV2 None None
c352b49d d_theta FineAmplitude [Q0] 0.0472+/-0.0011 good PulseBackendV2 None 2.659324

Initialization

Setup a fine amplitude experiment on the given qubit.

Parameters:
  • physical_qubits (Sequence[int]) – Sequence containing qubit(s) on which to run the fine amplitude calibration experiment.

  • gate (Gate) – The gate that will be repeated.

  • backend (Backend | None) – Optional, the backend to run the experiment on.

  • measurement_qubits (Sequence[int]) – The qubits in the given physical qubits that need to be measured.

Attributes

analysis: BaseAnalysis

Return the analysis instance for the experiment

backend

Return the backend for the experiment

experiment_options

Return the options for the experiment.

experiment_type

Return experiment type.

num_qubits

Return the number of qubits for the experiment.

physical_qubits

Return the device qubits for the experiment.

run_options

Return options values for the experiment run() method.

transpile_options

Return the transpiler options for the run() method.

Methods

circuits()[source]

Create the circuits for the fine amplitude calibration experiment.

Returns:

A list of circuits with a variable number of gates.

Raises:

CalibrationError – If the analysis options do not contain the angle_per_gate.

Return type:

List[QuantumCircuit]

config()

Return the config dataclass for this experiment

Return type:

ExperimentConfig

copy()

Return a copy of the experiment

Return type:

BaseExperiment

enable_restless(rep_delay=None, override_processor_by_restless=True, suppress_t1_error=False)

Enables a restless experiment by setting the restless run options and the restless data processor.

Deprecated since version 0.8: The method qiskit_experiments.framework.restless_mixin.RestlessMixin.enable_restless() is deprecated as of qiskit-experiments 0.8. It will be removed no earlier than 3 months after the release date. Support for restless experiments has been deprecated.

Parameters:
  • rep_delay (float | None) – The repetition delay. This is the delay between a measurement and the subsequent quantum circuit. Since the backends have dynamic repetition rates, the repetition delay can be set to a small value which is required for restless experiments. Typical values are 1 us or less.

  • override_processor_by_restless (bool) – If False, a data processor that is specified in the analysis options of the experiment is not overridden by the restless data processor. The default is True.

  • suppress_t1_error (bool) – If True, the default is False, then no error will be raised when rep_delay is larger than the T1 times of the qubits. Instead, a warning will be logged as restless measurements may have a large amount of noise.

Raises:
  • DataProcessorError – If the attribute rep_delay_range is not defined for the backend.

  • DataProcessorError – If a data processor has already been set but override_processor_by_restless is True.

  • DataProcessorError – If the experiment analysis does not have the data_processor option.

  • DataProcessorError – If the rep_delay is equal to or greater than the T1 time of one of the physical qubits in the experiment and the flag ignore_t1_check is False.

classmethod from_config(config)

Initialize an experiment from experiment config

Return type:

BaseExperiment

job_info(backend=None)

Get information about job distribution for the experiment on a specific backend.

Parameters:

backend (Backend) – Optional, the backend for which to get job distribution information. If not specified, the experiment must already have a set backend.

Returns:

A dictionary containing information about job distribution.

  • ”Total number of circuits in the experiment”: Total number of circuits in the experiment.

  • ”Maximum number of circuits per job”: Maximum number of circuits in one job based on backend and experiment settings.

  • ”Total number of jobs”: Number of jobs needed to run this experiment on the currently set backend.

Return type:

dict

Raises:

QiskitError – if backend is not specified.

run(backend=None, sampler=None, analysis='default', timeout=None, backend_run=None, **run_options)

Run an experiment and perform analysis.

Parameters:
  • backend (Backend | None) – Optional, the backend to run on. Will override existing backend settings.

  • sampler (BaseSamplerV2 | None) – Optional, the sampler to run the experiment on. If None then a sampler will be invoked from previously set backend

  • analysis (BaseAnalysis | None) – Optional, a custom analysis instance to use for performing analysis. If None analysis will not be run. If "default" the experiments analysis() instance will be used if it contains one.

  • timeout (float | None) – Time to wait for experiment jobs to finish running before cancelling.

  • backend_run (bool | None) – Use backend run (temp option for testing)

  • run_options – backend runtime options used for circuit execution.

Returns:

The experiment data object.

Raises:

QiskitError – If experiment is run with an incompatible existing ExperimentData container.

Return type:

ExperimentData

set_experiment_options(**fields)

Set the experiment options.

Parameters:

fields – The fields to update the options

Raises:

AttributeError – If the field passed in is not a supported options

set_run_options(**fields)

Set options values for the experiment run() method.

Parameters:

fields – The fields to update the options

See also

The Setting options for your experiment guide for code example.

set_transpile_options(**fields)

Set the transpiler options for run() method.

Parameters:

fields – The fields to update the options

Raises:

QiskitError – If initial_layout is one of the fields.

See also

The Setting options for your experiment guide for code example.