Source code for qiskit_experiments.library.calibration.fine_drag_cal

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Fine drag calibration experiment."""

from typing import Dict, Optional, Sequence
import numpy as np

from qiskit.circuit import Gate, QuantumCircuit
from qiskit.providers.backend import Backend
from qiskit.pulse import Play

from qiskit_experiments.exceptions import CalibrationError
from qiskit_experiments.framework import ExperimentData, Options
from qiskit_experiments.calibration_management import (
    BaseCalibrationExperiment,
    Calibrations,
)
from qiskit_experiments.calibration_management.update_library import BaseUpdater
from qiskit_experiments.library.characterization.fine_drag import FineDrag


[docs] class FineDragCal(BaseCalibrationExperiment, FineDrag): """A calibration version of the fine DRAG experiment. # section: example .. jupyter-execute:: :hide-code: import warnings warnings.filterwarnings("ignore", ".*Could not determine job completion time.*", UserWarning) #backend from qiskit_experiments.test.pulse_backend import SingleTransmonTestBackend backend = SingleTransmonTestBackend(5.2e9,-.25e9, 1e9, 0.8e9, 1e4, noise=False, seed=108) .. jupyter-execute:: from qiskit_experiments.calibration_management.calibrations import Calibrations from qiskit_experiments.calibration_management.basis_gate_library \ import FixedFrequencyTransmon from qiskit_experiments.library import FineDragCal library = FixedFrequencyTransmon(default_values={"duration": 320, "amp": 0.030, "beta": 0.0}) cals = Calibrations.from_backend(backend, libraries=[library]) exp_cal = FineDragCal((0,), calibrations=cals, backend=backend, schedule_name="sx", cal_parameter_name="β", auto_update=True, ) cal_data = exp_cal.run().block_for_results() display(cal_data.figure(0)) cal_data.analysis_results(dataframe=True) """ def __init__( self, physical_qubits: Sequence[int], calibrations: Calibrations, schedule_name: str, backend: Optional[Backend] = None, cal_parameter_name: Optional[str] = "β", auto_update: bool = True, ): r"""See class :class:`.FineDrag` for details. Note that this class implicitly assumes that the target angle of the gate is :math:`\pi` as seen from the default experiment options. Args: physical_qubits: Sequence containing the qubit for which to run the fine drag calibration. calibrations: The calibrations instance with the schedules. schedule_name: The name of the schedule to calibrate. backend: Optional, the backend to run the experiment on. cal_parameter_name: The name of the parameter in the schedule to update. auto_update: Whether or not to automatically update the calibrations. By default this variable is set to True. """ super().__init__( calibrations, physical_qubits, Gate(name=schedule_name, num_qubits=1, params=[]), schedule_name=schedule_name, backend=backend, cal_parameter_name=cal_parameter_name, auto_update=auto_update, ) @classmethod def _default_experiment_options(cls) -> Options: """Default experiment options. Experiment Options: target_angle (float): The target rotation angle of the gate being calibrated. This value is needed for the update rule. """ options = super()._default_experiment_options() options.update_options(target_angle=np.pi) return options def _metadata(self) -> Dict[str, any]: """Add metadata to the experiment data making it more self contained. The following keys are added to each experiment's metadata: cal_param_value: The value of the drag parameter. This value together with the fit result will be used to find the new value of the drag parameter. cal_param_name: The name of the parameter in the calibrations. cal_schedule: The name of the schedule in the calibrations. target_angle: The target angle of the gate. cal_group: The calibration group to which the parameter belongs. """ metadata = super()._metadata() metadata["target_angle"] = self.experiment_options.target_angle metadata["cal_param_value"] = self._cals.get_parameter_value( self._param_name, self.physical_qubits, self._sched_name, group=self.experiment_options.group, ) return metadata def _attach_calibrations(self, circuit: QuantumCircuit): """Attach the calibrations to the circuit.""" schedule = self._cals.get_schedule(self._sched_name, self.physical_qubits) circuit.add_calibration(self._sched_name, self.physical_qubits, schedule) # FineDrag always uses sx so attach it if it is not sched_name if self._sched_name != "sx": schedule = self._cals.get_schedule("sx", self.physical_qubits) circuit.add_calibration("sx", self.physical_qubits, schedule)
[docs] def update_calibrations(self, experiment_data: ExperimentData): """Update the drag parameter of the pulse in the calibrations.""" result_index = self.experiment_options.result_index group = experiment_data.metadata["cal_group"] target_angle = experiment_data.metadata["target_angle"] qubits = experiment_data.metadata["physical_qubits"] schedule = self._cals.get_schedule(self._sched_name, qubits) # Obtain sigma as it is needed for the fine DRAG update rule. sigmas = [] for block in schedule.blocks: if isinstance(block, Play) and hasattr(block.pulse, "sigma"): sigmas.append(getattr(block.pulse, "sigma")) if len(set(sigmas)) != 1: raise CalibrationError( "Cannot run fine Drag calibration on a schedule with multiple values of sigma." ) if len(sigmas) == 0: raise CalibrationError(f"Could not infer sigma from {schedule}.") d_theta = BaseUpdater.get_value(experiment_data, "d_theta", result_index) # See the documentation in fine_drag.py for the derivation of this rule. d_beta = -np.sqrt(np.pi) * d_theta * sigmas[0] / target_angle**2 old_beta = experiment_data.metadata["cal_param_value"] new_beta = old_beta + d_beta BaseUpdater.add_parameter_value( self._cals, experiment_data, new_beta, self._param_name, schedule, group )
[docs] class FineXDragCal(FineDragCal): """Fine DRAG calibration of X gate. # section: example .. jupyter-execute:: :hide-code: import warnings warnings.filterwarnings("ignore", ".*Could not determine job completion time.*", UserWarning) #backend from qiskit_experiments.test.pulse_backend import SingleTransmonTestBackend backend = SingleTransmonTestBackend(5.2e9,-.25e9, 1e9, 0.8e9, 1e4, noise=False, seed=118) .. jupyter-execute:: from qiskit_experiments.calibration_management.calibrations import Calibrations from qiskit_experiments.calibration_management.basis_gate_library \ import FixedFrequencyTransmon from qiskit_experiments.library import FineXDragCal library = FixedFrequencyTransmon(default_values={"duration": 320, "amp": 0.030, "beta": 0.0}) cals = Calibrations.from_backend(backend, libraries=[library]) exp_cal = FineXDragCal((0,), calibrations=cals, backend=backend, cal_parameter_name="β", auto_update=True, ) cal_data = exp_cal.run().block_for_results() display(cal_data.figure(0)) cal_data.analysis_results(dataframe=True) """ def __init__( self, physical_qubits: Sequence[int], calibrations: Calibrations, backend: Optional[Backend] = None, cal_parameter_name: Optional[str] = "β", auto_update: bool = True, ): r"""see class :class:`.FineDrag` for details. Args: physical_qubits: Sequence containing the qubit for which to run the fine drag calibration. calibrations: The calibrations instance with the schedules. backend: Optional, the backend to run the experiment on. cal_parameter_name: The name of the parameter in the schedule to update. auto_update: Whether or not to automatically update the calibrations. By default this variable is set to True. """ super().__init__( physical_qubits, calibrations, schedule_name="x", backend=backend, cal_parameter_name=cal_parameter_name, auto_update=auto_update, )
[docs] class FineSXDragCal(FineDragCal): """Fine DRAG calibration of X gate. # section: example .. jupyter-execute:: :hide-code: import warnings warnings.filterwarnings("ignore", ".*Could not determine job completion time.*", UserWarning) #backend from qiskit_experiments.test.pulse_backend import SingleTransmonTestBackend backend = SingleTransmonTestBackend(5.2e9,-.25e9, 1e9, 0.8e9, 1e4, noise=False, seed=118) .. jupyter-execute:: from qiskit_experiments.calibration_management.calibrations import Calibrations from qiskit_experiments.calibration_management.basis_gate_library \ import FixedFrequencyTransmon from qiskit_experiments.library import FineSXDragCal library = FixedFrequencyTransmon(default_values={"duration": 320, "amp": 0.030, "beta": 0.0}) cals = Calibrations.from_backend(backend=backend, libraries=[library]) exp_cal = FineSXDragCal((0,), calibrations=cals, backend=backend, cal_parameter_name="β", auto_update=True, ) cal_data = exp_cal.run().block_for_results() display(cal_data.figure(0)) cal_data.analysis_results(dataframe=True) """ def __init__( self, physical_qubits: Sequence[int], calibrations: Calibrations, backend: Optional[Backend] = None, cal_parameter_name: Optional[str] = "β", auto_update: bool = True, ): r"""see class :class:`.FineDrag` for details. Args: physical_qubits: Sequence containing the qubit for which to run the fine drag calibration. calibrations: The calibrations instance with the schedules. backend: Optional, the backend to run the experiment on. cal_parameter_name: The name of the parameter in the schedule to update. auto_update: Whether or not to automatically update the calibrations. By default this variable is set to True. """ super().__init__( physical_qubits, calibrations, schedule_name="sx", backend=backend, cal_parameter_name=cal_parameter_name, auto_update=auto_update, ) @classmethod def _default_experiment_options(cls) -> Options: """Default experiment options.""" options = super()._default_experiment_options() options.target_angle = np.pi / 2 return options