Encontrar la energía del estado fundamental usando AdaptVQE#
Esta guía describe cómo se puede utilizar el algoritmo AdaptVQE
para encontrar soluciones del estado fundamental de problemas de ciencias naturales.
Obtenemos un
ElectronicStructureProblem
que queremos resolver:
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(atom="H 0 0 0; H 0 0 0.735", basis="sto-3g")
problem = driver.run()
Configuramos nuestro
QubitMapper
:
from qiskit_nature.second_q.mappers import JordanWignerMapper
mapper = JordanWignerMapper()
Configuramos nuestro ansatz:
from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock
ansatz = UCCSD(
problem.num_spatial_orbitals,
problem.num_particles,
mapper,
initial_state=HartreeFock(
problem.num_spatial_orbitals,
problem.num_particles,
mapper,
),
)
Configuramos un
VQE
:
import numpy as np
from qiskit_algorithms import VQE
from qiskit_algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
vqe = VQE(Estimator(), ansatz, SLSQP())
vqe.initial_point = np.zeros(ansatz.num_parameters)
Configuramos el
AdaptVQE
:
from qiskit_algorithms import AdaptVQE
adapt_vqe = AdaptVQE(vqe)
adapt_vqe.supports_aux_operators = lambda: True # temporary fix
Encapsulamos todo en un
GroundStateEigensolver
:
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
solver = GroundStateEigensolver(mapper, adapt_vqe)
Resolvemos el problema:
result = solver.solve(problem)
print(f"Total ground state energy = {result.total_energies[0]:.4f}")
Total ground state energy = -1.1373