# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Layer Fidelity RB Experiment class.
"""
import functools
import logging
from collections import defaultdict
from typing import Union, Iterable, Optional, List, Sequence, Tuple, Dict
from numpy.random import Generator, default_rng
from numpy.random.bit_generator import BitGenerator, SeedSequence
from qiskit.circuit import QuantumCircuit, CircuitInstruction, Barrier, Gate
from qiskit.circuit.library import get_standard_gate_name_mapping
from qiskit.exceptions import QiskitError
from qiskit.providers import BackendV2Converter
from qiskit.providers.backend import Backend, BackendV1, BackendV2
from qiskit.quantum_info import Clifford
from qiskit.pulse.instruction_schedule_map import CalibrationPublisher
from qiskit_experiments.framework import BaseExperiment, Options
from qiskit_experiments.framework.configs import ExperimentConfig
from qiskit_experiments.framework.restless_mixin import RestlessMixin
from .clifford_utils import (
CliffordUtils,
DEFAULT_SYNTHESIS_METHOD,
compose_1q,
compose_2q,
inverse_1q,
inverse_2q,
num_from_2q_circuit,
_tensor_1q_nums,
_clifford_1q_int_to_instruction,
_clifford_2q_int_to_instruction,
_decompose_clifford_ops,
)
from .layer_fidelity_analysis import LayerFidelityAnalysis
LOG = logging.getLogger(__name__)
GATE_NAME_MAP = get_standard_gate_name_mapping()
NUM_1Q_CLIFFORD = CliffordUtils.NUM_CLIFFORD_1_QUBIT
[docs]
class LayerFidelity(BaseExperiment, RestlessMixin):
r"""A holistic benchmarking experiment to characterize the full quality of the devices at scale.
# section: overview
Layer Fidelity (LF) is a method to estimate the fidelity of
a connecting set of two-qubit gates over :math:`N` qubits by measuring gate errors
using simultaneous direct randomized benchmarking (RB) in disjoint layers.
LF can easily be expressed as a layer size independent quantity, error per layered gate (EPLG):
:math:`EPLG = 1 - LF^{1/N_{2Q}}` where :math:`N_{2Q}` is number of 2-qubit gates in the layers.
Each of the 2-qubit (or 1-qubit) direct RBs yields the decaying probabilities
to get back to the ground state for an increasing sequence length (i.e. number of layers),
fits the exponential curve to estimate the decay rate, and calculates
the process fidelity of the subsystem from the rate.
LF is calculated as the product of the 2-qubit (or 1-qubit) process fidelities.
See Ref. [1] for details.
# section: analysis_ref
:class:`LayerFidelityAnalysis`
# section: reference
.. ref_arxiv:: 1 2311.05933
"""
def __init__(
self,
physical_qubits: Sequence[int],
two_qubit_layers: Sequence[Sequence[Tuple[int, int]]],
lengths: Iterable[int],
backend: Optional[Backend] = None,
num_samples: int = 6,
seed: Optional[Union[int, SeedSequence, BitGenerator, Generator]] = None,
two_qubit_gate: Optional[str] = None,
one_qubit_basis_gates: Optional[Sequence[str]] = None,
):
"""Initialize a layer fidelity experiment.
Args:
physical_qubits: List of physical qubits for the experiment.
two_qubit_layers: List of two-qubit gate layers to run on. Each two-qubit
gate layer must be given as a list of directed qubit pairs.
lengths: A list of layer lengths (the number of depth points).
backend: The backend to run the experiment on. Note that either ``backend`` or
``two_qubit_gate`` and ``one_qubit_basis_gates`` must be set at instantiation.
num_samples: Number of samples (i.e. circuits) to generate for each layer length.
seed: Optional, seed used to initialize ``numpy.random.default_rng``.
when generating circuits. The ``default_rng`` will be initialized
with this seed value every time :meth:~.LayerFidelity.circuits` is called.
two_qubit_gate: Optional, 2q-gate name (e.g. "cx", "cz", "ecr")
of which the two qubit layers consist.
If not specified (but ``backend`` is supplied),
one of 2q-gates supported in the backend is automatically set.
one_qubit_basis_gates: Optional, 1q-gates to use for implementing 1q-Clifford operations.
If not specified (but ``backend`` is supplied),
all 1q-gates supported in the backend are automatically set.
Raises:
QiskitError: If any invalid argument is supplied.
"""
# Compute full layers
full_layers = []
for two_q_layer in two_qubit_layers:
qubits_in_layer = {q for qpair in two_q_layer for q in qpair}
if len(qubits_in_layer) != 2 * len(two_q_layer):
raise QiskitError("two_qubit_layers have a layer with gates on non-disjoint qubits")
for q in qubits_in_layer:
if q not in physical_qubits:
raise QiskitError(f"Qubit {q} in two_qubit_layers is not in physical_qubits")
layer = two_q_layer + [(q,) for q in physical_qubits if q not in qubits_in_layer]
full_layers.append(layer)
# Initialize base experiment
super().__init__(
physical_qubits, analysis=LayerFidelityAnalysis(full_layers), backend=backend
)
# assert isinstance(backend, BackendV2)
# Verify parameters
if len(set(lengths)) != len(lengths):
raise QiskitError(f"The lengths list {lengths} should not contain duplicate elements.")
if num_samples <= 0:
raise QiskitError(f"The number of samples {num_samples} should be positive.")
if two_qubit_gate is None:
if self.backend is None:
raise QiskitError("two_qubit_gate or backend must be supplied.")
# Try to set default two_qubit_gate from backend
for op in self.backend.target.operations:
if isinstance(op, Gate) and op.num_qubits == 2:
two_qubit_gate = op.name
LOG.info("%s is set for two_qubit_gate", op.name)
break
if not two_qubit_gate:
raise QiskitError("two_qubit_gate is not provided and failed to set from backend.")
else:
if self.backend is None and two_qubit_gate not in GATE_NAME_MAP:
raise QiskitError(f"Unknown two_qubit_gate: {two_qubit_gate}.")
if one_qubit_basis_gates is None:
if self.backend is None:
raise QiskitError("one_qubit_basis_gates or backend must be supplied.")
# Try to set default one_qubit_basis_gates from backend
one_qubit_basis_gates = []
for op in self.backend.target.operations:
if isinstance(op, Gate) and op.num_qubits == 1:
one_qubit_basis_gates.append(op.name)
LOG.info("%s is set for one_qubit_basis_gates", str(one_qubit_basis_gates))
if not one_qubit_basis_gates:
raise QiskitError(
"one_qubit_basis_gates is not provided and failed to set from backend."
)
else:
if self.backend is None:
for gate in one_qubit_basis_gates:
if gate not in GATE_NAME_MAP:
raise QiskitError(f"Unknown gate in one_qubit_basis_gates: {gate}.")
# Set configurable options
self.set_experiment_options(
lengths=sorted(lengths),
num_samples=num_samples,
seed=seed,
two_qubit_layers=two_qubit_layers,
two_qubit_gate=two_qubit_gate,
one_qubit_basis_gates=tuple(one_qubit_basis_gates),
)
# Verify two_qubit_gate and one_qubit_basis_gates
self.__validate_basis_gates()
@classmethod
def _default_experiment_options(cls) -> Options:
"""Default experiment options.
Experiment Options:
two_qubit_layers (List[List[Tuple[int, int]]]): List of two-qubit gate layers to run on.
Each two-qubit gate layer must be given as a list of directed qubit pairs.
lengths (List[int]): A list of layer lengths.
num_samples (int): Number of samples to generate for each layer length.
seed (None or int or SeedSequence or BitGenerator or Generator): A seed
used to initialize ``numpy.random.default_rng`` when generating circuits.
The ``default_rng`` will be initialized with this seed value every time
:meth:`circuits` is called.
two_qubit_gate (str): Two-qubit gate name (e.g. "cx", "cz", "ecr")
of which the two qubit layers consist.
one_qubit_basis_gates (Tuple[str]): One-qubit gates to use for implementing 1q Cliffords.
clifford_synthesis_method (str): The name of the Clifford synthesis plugin to use
for building circuits of RB sequences.
"""
options = super()._default_experiment_options()
options.update_options(
lengths=None,
num_samples=None,
seed=None,
two_qubit_layers=None,
two_qubit_gate=None,
one_qubit_basis_gates=None,
clifford_synthesis_method=DEFAULT_SYNTHESIS_METHOD,
)
return options
[docs]
def set_experiment_options(self, **fields):
"""Set the experiment options.
Args:
fields: The fields to update the options
Raises:
AttributeError: If the field passed in is not a supported options
"""
for field in fields:
if field in {"two_qubit_layers"}:
if (
hasattr(self._experiment_options, field)
and self._experiment_options[field] is not None
):
raise AttributeError(f"Options field {field} is not allowed to update.")
super().set_experiment_options(**fields)
@classmethod
def _default_transpile_options(cls) -> Options:
"""Default transpiler options for transpiling RB circuits."""
return Options(optimization_level=1)
[docs]
def set_transpile_options(self, **fields):
"""Transpile options is not supported for LayerFidelity experiments.
Raises:
QiskitError: If `set_transpile_options` is called.
"""
raise QiskitError(
"Custom transpile options is not supported for LayerFidelity experiments."
)
def _set_backend(self, backend: Backend):
"""Set the backend V2 for RB experiments since RB experiments only support BackendV2.
If BackendV1 is provided, it is converted to V2 and stored.
"""
if isinstance(backend, BackendV1):
super()._set_backend(BackendV2Converter(backend, add_delay=True))
else:
super()._set_backend(backend)
self.__validate_basis_gates()
def __validate_basis_gates(self) -> None:
if not self.backend:
return
opts = self.experiment_options
# validate two_qubit_gate if it is set
if opts.two_qubit_gate:
if opts.two_qubit_gate not in self.backend.target.operation_names:
raise QiskitError(f"two_qubit_gate {opts.two_qubit_gate} is not in backend.target")
for two_q_layer in opts.two_qubit_layers:
for qpair in two_q_layer:
if not self.backend.target.instruction_supported(opts.two_qubit_gate, qpair):
raise QiskitError(f"{opts.two_qubit_gate}{qpair} is not in backend.target")
# validate one_qubit_basis_gates if it is set
for gate in opts.one_qubit_basis_gates or []:
if gate not in self.backend.target.operation_names:
raise QiskitError(f"{gate} in one_qubit_basis_gates is not in backend.target")
for gate in opts.one_qubit_basis_gates or []:
for q in self.physical_qubits:
if not self.backend.target.instruction_supported(gate, (q,)):
raise QiskitError(f"{gate}({q}) is not in backend.target")
def __residual_qubits(self, two_qubit_layer):
qubits_in_layer = {q for qpair in two_qubit_layer for q in qpair}
return [q for q in self.physical_qubits if q not in qubits_in_layer]
[docs]
def circuits(self) -> List[QuantumCircuit]:
r"""Return a list of physical circuits to measure layer fidelity.
Returns:
A list of :class:`QuantumCircuit`\s.
"""
return list(self.circuits_generator())
[docs]
def circuits_generator(self) -> Iterable[QuantumCircuit]:
r"""Return a generator of physical circuits to measure layer fidelity.
Returns:
A generator of :class:`QuantumCircuit`\s.
"""
opts = self.experiment_options
residal_qubits_by_layer = [self.__residual_qubits(layer) for layer in opts.two_qubit_layers]
rng = default_rng(seed=opts.seed)
# define functions and variables for speed
_to_gate_1q = functools.partial(
_clifford_1q_int_to_instruction,
basis_gates=opts.one_qubit_basis_gates,
synthesis_method=opts.clifford_synthesis_method,
)
_to_gate_2q = functools.partial(
_clifford_2q_int_to_instruction,
basis_gates=(opts.two_qubit_gate,) + opts.one_qubit_basis_gates,
coupling_tuple=((0, 1),),
synthesis_method=opts.clifford_synthesis_method,
)
if self.backend:
gate2q = self.backend.target.operation_from_name(opts.two_qubit_gate)
else:
gate2q = GATE_NAME_MAP[opts.two_qubit_gate]
gate2q_cliff = num_from_2q_circuit(Clifford(gate2q).to_circuit())
# Circuit generation
num_qubits = max(self.physical_qubits) + 1
for i_sample in range(opts.num_samples):
for i_set, (two_qubit_layer, one_qubits) in enumerate(
zip(opts.two_qubit_layers, residal_qubits_by_layer)
):
num_2q_gates = len(two_qubit_layer)
num_1q_gates = len(one_qubits)
composite_qubits = two_qubit_layer + [(q,) for q in one_qubits]
composite_clbits = [(2 * c, 2 * c + 1) for c in range(num_2q_gates)]
composite_clbits.extend(
[(c,) for c in range(2 * num_2q_gates, 2 * num_2q_gates + num_1q_gates)]
)
for length in opts.lengths:
circ = QuantumCircuit(num_qubits, num_qubits)
barrier_inst = CircuitInstruction(Barrier(num_qubits), circ.qubits)
self.__circuit_body(
circ,
length,
two_qubit_layer,
one_qubits,
rng,
_to_gate_1q,
_to_gate_2q,
gate2q,
gate2q_cliff,
barrier_inst,
)
# add the measurements
circ._append(barrier_inst)
for qubits, clbits in zip(composite_qubits, composite_clbits):
circ.measure(qubits, clbits)
# store composite structure in metadata
circ.metadata = {
"experiment_type": "BatchExperiment",
"composite_metadata": [
{
"experiment_type": "ParallelExperiment",
"composite_index": list(range(len(composite_qubits))),
"composite_metadata": [
{
"experiment_type": "SubLayerFidelity",
"physical_qubits": qpair,
"sample": i_sample,
"xval": length,
}
for qpair in two_qubit_layer
]
+ [
{
"experiment_type": "SubLayerFidelity",
"physical_qubits": (q,),
"sample": i_sample,
"xval": length,
}
for q in one_qubits
],
"composite_qubits": composite_qubits,
"composite_clbits": composite_clbits,
}
],
"composite_index": [i_set],
}
yield circ
@staticmethod
def __circuit_body(
circ,
length,
two_qubit_layer,
one_qubits,
rng,
_to_gate_1q,
_to_gate_2q,
gate2q,
gate2q_cliff,
barrier_inst,
):
# initialize cliffords and a ciruit (0: identity clifford)
cliffs_2q = [0] * len(two_qubit_layer)
cliffs_1q = [0] * len(one_qubits)
for _ in range(length):
# sample random 1q-Clifford layer
for j, qpair in enumerate(two_qubit_layer):
# sample product of two 1q-Cliffords as 2q interger Clifford
samples = rng.integers(NUM_1Q_CLIFFORD, size=2)
cliffs_2q[j] = compose_2q(cliffs_2q[j], _tensor_1q_nums(*samples))
# For Clifford 1 (x) Clifford 2, in its circuit representation,
# Clifford 1 acts on the 2nd qubit and Clifford 2 acts on the 1st qubit.
# That's why the qpair is reversed here.
for sample, q in zip(samples, reversed(qpair)):
circ._append(_to_gate_1q(sample), (circ.qubits[q],), ())
for k, q in enumerate(one_qubits):
sample = rng.integers(NUM_1Q_CLIFFORD)
cliffs_1q[k] = compose_1q(cliffs_1q[k], sample)
circ._append(_to_gate_1q(sample), (circ.qubits[q],), ())
circ._append(barrier_inst)
# add two qubit gates
for j, qpair in enumerate(two_qubit_layer):
circ._append(gate2q, tuple(circ.qubits[q] for q in qpair), ())
cliffs_2q[j] = compose_2q(cliffs_2q[j], gate2q_cliff)
# TODO: add dd if necessary
for k, q in enumerate(one_qubits):
# TODO: add dd if necessary
pass
circ._append(barrier_inst)
# add the last inverse
for j, qpair in enumerate(two_qubit_layer):
inv = inverse_2q(cliffs_2q[j])
circ._append(_to_gate_2q(inv), tuple(circ.qubits[q] for q in qpair), ())
for k, q in enumerate(one_qubits):
inv = inverse_1q(cliffs_1q[k])
circ._append(_to_gate_1q(inv), (circ.qubits[q],), ())
return circ
def _transpiled_circuits(self) -> List[QuantumCircuit]:
"""Return a list of experiment circuits, transpiled."""
transpiled = [_decompose_clifford_ops(circ) for circ in self.circuits()]
# Set custom calibrations provided in backend
if isinstance(self.backend, BackendV2):
instructions = [] # (op_name, qargs) for each element where qargs mean qubit tuple
for two_qubit_layer in self.experiment_options.two_qubit_layers:
for qpair in two_qubit_layer:
instructions.append((self.experiment_options.two_qubit_gate, tuple(qpair)))
for q in self.physical_qubits:
for gate_1q in self.experiment_options.one_qubit_basis_gates:
instructions.append((gate_1q, (q,)))
common_calibrations = defaultdict(dict)
for op_name, qargs in instructions:
inst_prop = self.backend.target[op_name].get(qargs, None)
if inst_prop is None:
continue
schedule = inst_prop.calibration
if schedule is None:
continue
publisher = schedule.metadata.get("publisher", CalibrationPublisher.QISKIT)
if publisher != CalibrationPublisher.BACKEND_PROVIDER:
common_calibrations[op_name][(qargs, tuple())] = schedule
for circ in transpiled:
circ.calibrations = common_calibrations
return transpiled
def _metadata(self):
metadata = super()._metadata()
metadata["two_qubit_layers"] = self.experiment_options.two_qubit_layers
return metadata
[docs]
@classmethod
def from_config(cls, config: Union[ExperimentConfig, Dict]) -> "LayerFidelity":
"""Initialize an experiment from experiment config"""
if isinstance(config, dict):
config = ExperimentConfig(**dict)
ret = cls(*config.args, **config.kwargs)
if config.run_options:
ret.set_run_options(**config.run_options)
return ret