Source code for qiskit_experiments.framework.composite.parallel_experiment

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Parallel Experiment class.
"""
from typing import List, Optional
import numpy as np

from qiskit import QuantumCircuit, ClassicalRegister
from qiskit.circuit import Clbit
from qiskit.providers.backend import Backend
from qiskit_experiments.exceptions import QiskitError
from .composite_experiment import CompositeExperiment, BaseExperiment
from .composite_analysis import CompositeAnalysis


[docs] class ParallelExperiment(CompositeExperiment): """Combine multiple experiments into a parallel experiment. Parallel experiments combine individual experiments on disjoint subsets of qubits into a single composite experiment on the union of those qubits. The component experiment circuits are combined to run in parallel on the respective qubits. Analysis of parallel experiments is performed using the :class:`~qiskit_experiments.framework.CompositeAnalysis` class which handles marginalizing the composite experiment circuit data into individual child :class:`ExperimentData` containers for each component experiment which are then analyzed using the corresponding analysis class for that component experiment. See :class:`~qiskit_experiments.framework.CompositeAnalysis` documentation for additional information. """ def __init__( self, experiments: List[BaseExperiment], backend: Optional[Backend] = None, flatten_results: bool = True, analysis: Optional[CompositeAnalysis] = None, experiment_type: Optional[str] = None, ): """Initialize the analysis object. Args: experiments: a list of experiments. backend: Optional, the backend to run the experiment on. flatten_results: If True flatten all component experiment results into a single ExperimentData container, including nested composite experiments. If False save each component experiment results as a separate child ExperimentData container. This kwarg is ignored if the analysis kwarg is used. analysis: Optional, the composite analysis class to use. If not provided this will be initialized automatically from the supplied experiments. """ qubits = [] for exp in experiments: qubits += exp.physical_qubits super().__init__( experiments, qubits, backend=backend, analysis=analysis, flatten_results=flatten_results, experiment_type=experiment_type, )
[docs] def circuits(self): return self._combined_circuits(device_layout=False)
def _transpiled_circuits(self): return self._combined_circuits(device_layout=True) def _combined_circuits(self, device_layout: bool) -> List[QuantumCircuit]: """Generate combined parallel circuits from transpiled subcircuits.""" if not device_layout: # Num qubits will be computed from sub experiments num_qubits = len(self.physical_qubits) else: # Work around for backend coupling map circuit inflation coupling_map = getattr(self.transpile_options, "coupling_map", None) if coupling_map is None and self.backend: coupling_map = self._backend_data.coupling_map if coupling_map is not None: num_qubits = 1 + max(*self.physical_qubits, np.max(coupling_map)) else: num_qubits = 1 + max(self.physical_qubits) joint_circuits = [] sub_qubits = 0 for exp_idx, sub_exp in enumerate(self._experiments): # Generate transpiled subcircuits sub_circuits = sub_exp._transpiled_circuits() # Qubit remapping for non-transpiled circuits if not device_layout: qubits = list(range(sub_qubits, sub_qubits + sub_exp.num_qubits)) qargs_map = {q: qubits[i] for i, q in enumerate(sub_exp.physical_qubits)} sub_qubits += sub_exp.num_qubits else: qubits = list(sub_exp.physical_qubits) qargs_map = {q: q for q in sub_exp.physical_qubits} for circ_idx, sub_circ in enumerate(sub_circuits): if circ_idx >= len(joint_circuits): # Initialize new joint circuit or extract # existing circuit if already initialized new_circuit = QuantumCircuit(num_qubits, name=f"parallel_exp_{circ_idx}") new_circuit.metadata = { "experiment_type": self._type, "composite_index": [], "composite_metadata": [], "composite_qubits": [], "composite_clbits": [], } joint_circuits.append(new_circuit) # Add classical registers required by subcircuit circuit = joint_circuits[circ_idx] num_clbits = circuit.num_clbits sub_clbits = sub_circ.num_clbits clbits = list(range(num_clbits, num_clbits + sub_clbits)) if sub_clbits: creg = ClassicalRegister(sub_clbits) sub_cargs = [Clbit(creg, i) for i in range(sub_clbits)] circuit.add_register(creg) else: sub_cargs = [] # Apply transpiled subcircuit # Note that this assumes the circuit was not expanded to use # any qubits outside the specified physical qubits for data in sub_circ.data: inst = data.operation qargs = data.qubits cargs = data.clbits mapped_cargs = [sub_cargs[sub_circ.find_bit(i).index] for i in cargs] try: mapped_qargs = [ circuit.qubits[qargs_map[sub_circ.find_bit(i).index]] for i in qargs ] except KeyError as ex: # Instruction is outside physical qubits for the component # experiment. # This could legitimately happen if the subcircuit was # explicitly scheduled during transpilation which would # insert delays on all auxillary device qubits. # We skip delay instructions to allow for this. if inst.name == "delay": continue raise QiskitError( "Component experiment has been transpiled outside of the " "allowed physical qubits for that component. Check the " "experiment is valid on the backends coupling map." ) from ex circuit._append(inst, mapped_qargs, mapped_cargs) # Add subcircuit metadata circuit.metadata["composite_index"].append(exp_idx) circuit.metadata["composite_metadata"].append(sub_circ.metadata) circuit.metadata["composite_qubits"].append(qubits) circuit.metadata["composite_clbits"].append(clbits) # Add the calibrations for gate, cals in sub_circ.calibrations.items(): for key, sched in cals.items(): circuit.add_calibration(gate, qubits=key[0], schedule=sched, params=key[1]) return joint_circuits