SLSQP#

class SLSQP(maxiter=100, disp=False, ftol=1e-06, tol=None, eps=1.4901161193847656e-08, options=None, max_evals_grouped=1, **kwargs)[source]#

Bases: SciPyOptimizer

Sequential Least SQuares Programming optimizer.

SLSQP minimizes a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

SLSQP is ideal for mathematical problems for which the objective function and the constraints are twice continuously differentiable. Note that the wrapper handles infinite values in bounds by converting them into large floating values.

Uses scipy.optimize.minimize SLSQP. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters:
  • maxiter (int) – Maximum number of iterations.

  • disp (bool) – Set to True to print convergence messages.

  • ftol (float) – Precision goal for the value of f in the stopping criterion.

  • tol (float | None) – Tolerance for termination.

  • eps (float) – Step size used for numerical approximation of the Jacobian.

  • options (dict | None) – A dictionary of solver options.

  • max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.

  • kwargs – additional kwargs for scipy.optimize.minimize.

Attributes

bounds_support_level#

Returns bounds support level

gradient_support_level#

Returns gradient support level

initial_point_support_level#

Returns initial point support level

is_bounds_ignored#

Returns is bounds ignored

is_bounds_required#

Returns is bounds required

is_bounds_supported#

Returns is bounds supported

is_gradient_ignored#

Returns is gradient ignored

is_gradient_required#

Returns is gradient required

is_gradient_supported#

Returns is gradient supported

is_initial_point_ignored#

Returns is initial point ignored

is_initial_point_required#

Returns is initial point required

is_initial_point_supported#

Returns is initial point supported

setting#

Return setting

settings#

Methods

get_support_level()#

Return support level dictionary

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)#

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters:
  • x_center (ndarray) – point around which we compute the gradient

  • f (func) – the function of which the gradient is to be computed.

  • epsilon (float) – the epsilon used in the numeric differentiation.

  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns:

the gradient computed

Return type:

grad

minimize(fun, x0, jac=None, bounds=None)#

Minimize the scalar function.

Parameters:
  • fun (Callable[[POINT], float]) – The scalar function to minimize.

  • x0 (POINT) – The initial point for the minimization.

  • jac (Callable[[POINT], POINT] | None) – The gradient of the scalar function fun.

  • bounds (list[tuple[float, float]] | None) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Returns:

The result of the optimization, containing e.g. the result as attribute x.

Return type:

OptimizerResult

print_options()#

Print algorithm-specific options.

set_max_evals_grouped(limit)#

Set max evals grouped

set_options(**kwargs)#

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters:

kwargs (dict) – options, given as name=value.

static wrap_function(function, args)#

Wrap the function to implicitly inject the args at the call of the function.

Parameters:
  • function (func) – the target function

  • args (tuple) – the args to be injected

Returns:

wrapper

Return type:

function_wrapper