AmplitudeEstimation#
- class AmplitudeEstimation(num_eval_qubits, phase_estimation_circuit=None, iqft=None, sampler=None)[source]#
Bases:
AmplitudeEstimator
The Quantum Phase Estimation-based Amplitude Estimation algorithm.
This class implements the original Quantum Amplitude Estimation (QAE) algorithm, introduced by [1]. This canonical version uses quantum phase estimation along with a set of \(m\) additional evaluation qubits to find an estimate \(\tilde{a}\), that is restricted to the grid
\[\tilde{a} \in \{\sin^2(\pi y / 2^m) : y = 0, ..., 2^{m-1}\}\]More evaluation qubits produce a finer sampling grid, therefore the accuracy of the algorithm increases with \(m\).
Using a maximum likelihood post processing, this grid constraint can be circumvented. This improved estimator is implemented as well, see [2] Appendix A for more detail.
Note
This class does not support the
EstimationProblem.is_good_state
property, as for phase estimation-based QAE, the oracle that identifies the good states must be encoded in the Grover operator. To set custom oracles, theEstimationProblem.grover_operator
attribute can be set directly.References
- [1]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).
Quantum Amplitude Amplification and Estimation. arXiv:quant-ph/0005055.
- [2]: Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2019).
Iterative Quantum Amplitude Estimation. arXiv:1912.05559.
- Parameters:
num_eval_qubits (int) – The number of evaluation qubits.
phase_estimation_circuit (QuantumCircuit | None) – The phase estimation circuit used to run the algorithm. Defaults to the standard phase estimation circuit from the circuit library, qiskit.circuit.library.PhaseEstimation when None.
iqft (QuantumCircuit | None) – The inverse quantum Fourier transform component, defaults to using a standard implementation from qiskit.circuit.library.QFT when None.
sampler (BaseSampler | None) – A sampler primitive to evaluate the circuits.
- Raises:
ValueError – If the number of evaluation qubits is smaller than 1.
Attributes
- sampler#
Get the sampler primitive.
- Returns:
The sampler primitive to evaluate the circuits.
Methods
- static compute_confidence_interval(result, alpha=0.05, kind='likelihood_ratio', exact=False)[source]#
Compute the (1 - alpha) confidence interval.
- Parameters:
result (AmplitudeEstimationResult) – An amplitude estimation result for which to compute the confidence interval.
alpha (float) – Confidence level: compute the (1 - alpha) confidence interval.
kind (str) – The method to compute the confidence interval, can be ‘fisher’, ‘observed_fisher’ or ‘likelihood_ratio’ (default)
exact (bool) – Whether the result comes from a statevector simulation or not
- Returns:
The (1 - alpha) confidence interval of the specified kind.
- Raises:
NotImplementedError – If the confidence interval method kind is not implemented.
- Return type:
- static compute_mle(result, apply_post_processing=False)[source]#
Compute the Maximum Likelihood Estimator (MLE).
- Parameters:
result (AmplitudeEstimationResult) – An amplitude estimation result object.
apply_post_processing (bool) – If True, apply the post processing to the MLE before returning it.
- Returns:
The MLE for the provided result object.
- Return type:
- construct_circuit(estimation_problem, measurement=False)[source]#
Construct the Amplitude Estimation quantum circuit.
- Parameters:
estimation_problem (EstimationProblem) – The estimation problem for which to construct the QAE circuit.
measurement (bool) – Boolean flag to indicate if measurements should be included in the circuit.
- Returns:
The QuantumCircuit object for the constructed circuit.
- Return type:
- estimate(estimation_problem)[source]#
Run the amplitude estimation algorithm on provided estimation problem.
- Parameters:
estimation_problem (EstimationProblem) – The estimation problem.
- Returns:
An amplitude estimation results object.
- Raises:
ValueError – If state_preparation or objective_qubits are not set in the estimation_problem.
AlgorithmError – Sampler job run error.
- Return type:
- evaluate_measurements(circuit_results, threshold=1e-06)[source]#
Evaluate the results from the circuit simulation.
Given the probabilities from statevector simulation of the QAE circuit, compute the probabilities that the measurements y/grid-points a are the best estimate.
- Parameters:
- Returns:
- Dictionaries containing the a grid-points with respective probabilities and
y measurements with respective probabilities, in this order.
- Return type: