PVQD#
- class PVQD(fidelity, ansatz, initial_parameters, estimator=None, optimizer=None, num_timesteps=None, evolution=None, use_parameter_shift=True, initial_guess=None)[source]#
Bases:
RealTimeEvolver
The projected Variational Quantum Dynamics (p-VQD) Algorithm.
In each timestep, this algorithm computes the next state with a Trotter formula (specified by the
evolution
argument) and projects the timestep onto a variational form (ansatz
). The projection is determined by maximizing the fidelity of the Trotter-evolved state and the ansatz, using a classical optimization routine. See Ref. [1] for details.The following attributes can be set via the initializer but can also be read and updated once the PVQD object has been constructed.
- ansatz#
The parameterized circuit representing the time-evolved state.
- Type:
QuantumCircuit
- initial_parameters#
The parameters of the ansatz at time 0.
- Type:
np.ndarray
- optimizer#
The classical optimization routine used to maximize the fidelity of the Trotter step and ansatz.
- num_timesteps#
The number of timesteps to take. If None, it is automatically selected to achieve a timestep of approximately 0.01.
- Type:
Optional[int]
- evolution#
The method to perform the Trotter step. Defaults to first-order Lie-Trotter evolution.
- Type:
Optional[EvolutionSynthesis]
- use_parameter_shift#
If True, use the parameter shift rule for loss function gradients (if the ansatz supports).
- Type:
- initial_guess#
The starting point for the first classical optimization run, at time 0. Defaults to random values in \([-0.01, 0.01]\).
- Type:
Optional[np.ndarray]
Example
This snippet computes the real time evolution of a quantum Ising model on two neighboring sites and keeps track of the magnetization.
import numpy as np from qiskit_algorithms.state_fidelities import ComputeUncompute from qiskit_algorithms.time_evolvers import TimeEvolutionProblem, PVQD from qiskit.primitives import Estimator, Sampler from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp, Pauli from qiskit_algorithms.optimizers import L_BFGS_B sampler = Sampler() fidelity = ComputeUncompute(sampler) estimator = Estimator() hamiltonian = 0.1 * SparsePauliOp(["ZZ", "IX", "XI"]) observable = Pauli("ZZ") ansatz = EfficientSU2(2, reps=1) initial_parameters = np.zeros(ansatz.num_parameters) time = 1 optimizer = L_BFGS_B() # setup the algorithm pvqd = PVQD( fidelity, ansatz, initial_parameters, estimator, num_timesteps=100, optimizer=optimizer, ) # specify the evolution problem problem = TimeEvolutionProblem( hamiltonian, time, aux_operators=[hamiltonian, observable] ) # and evolve! result = pvqd.evolve(problem)
References
- [1] Stefano Barison, Filippo Vicentini, and Giuseppe Carleo (2021), An efficient
quantum algorithm for the time evolution of parameterized circuits, Quantum 5, 512.
- Parameters:
fidelity (BaseStateFidelity) – A fidelity primitive used by the algorithm.
ansatz (QuantumCircuit) – A parameterized circuit preparing the variational ansatz to model the time evolved quantum state.
initial_parameters (np.ndarray) – The initial parameters for the ansatz. Together with the ansatz, these define the initial state of the time evolution.
estimator (BaseEstimator | None) – An estimator primitive used for calculating expected values of auxiliary operators (if provided via the problem).
optimizer (Optimizer | Minimizer | None) – The classical optimizers used to minimize the overlap between Trotterization and ansatz. Can be either a
Optimizer
or a callable using theMinimizer
protocol. This argument is optional since it is not required forget_loss()
, but it has to be set beforeevolve()
is called.num_timesteps (int | None) – The number of time steps. If
None
it will be set such that the timestep is close to 0.01.evolution (EvolutionSynthesis | None) – The evolution synthesis to use for the construction of the Trotter step. Defaults to first-order Lie-Trotter decomposition, see also
evolution
for different options.use_parameter_shift (bool) – If True, use the parameter shift rule to compute gradients. If False, the optimizer will not be passed a gradient callable. In that case, Qiskit optimizers will use a finite difference rule to approximate the gradients.
initial_guess (np.ndarray | None) – The initial guess for the first VQE optimization. Afterwards the previous iteration result is used as initial guess. If None, this is set to a random vector with elements in the interval \([-0.01, 0.01]\).
Methods
- evolve(evolution_problem)[source]#
Perform real time evolution \(\exp(-i t H)|\Psi\rangle\).
Evolves an initial state \(|\Psi\rangle\) for a time \(t\) under a Hamiltonian \(H\), as provided in the
evolution_problem
.- Parameters:
evolution_problem (TimeEvolutionProblem) – The evolution problem containing the hamiltonian, total evolution time and observables to evaluate.
- Returns:
A result object containing the evolution information and evaluated observables.
- Raises:
ValueError – If
aux_operators
provided in the time evolution problem but no estimator provided to the algorithm.NotImplementedError – If the evolution problem contains an initial state.
- Return type:
- get_loss(hamiltonian, ansatz, dt, current_parameters)[source]#
Get a function to evaluate the infidelity between Trotter step and ansatz.
- Parameters:
hamiltonian (BaseOperator) – The Hamiltonian under which to evolve.
ansatz (QuantumCircuit) – The parameterized quantum circuit which attempts to approximate the time-evolved state.
dt (float) – The time step.
current_parameters (np.ndarray) – The current parameters.
- Returns:
- A callable to evaluate the infidelity and, if gradients are supported and required,
a second callable to evaluate the gradient of the infidelity.
- Return type:
tuple[Callable[[np.ndarray], float], Callable[[np.ndarray], np.ndarray]] | None
- step(hamiltonian, ansatz, theta, dt, initial_guess)[source]#
Perform a single time step.
- Parameters:
hamiltonian (BaseOperator) – The Hamiltonian under which to evolve.
ansatz (QuantumCircuit) – The parameterized quantum circuit which attempts to approximate the time-evolved state.
theta (np.ndarray) – The current parameters.
dt (float) – The time step.
initial_guess (np.ndarray) – The initial guess for the classical optimization of the fidelity between the next variational state and the Trotter-evolved last state. If None, this is set to a random vector with elements in the interval \([-0.01, 0.01]\).
- Returns:
A tuple consisting of the next parameters and the fidelity of the optimization.
- Return type: