COBYLA#
- class COBYLA(maxiter=1000, disp=False, rhobeg=1.0, tol=None, options=None, **kwargs)[source]#
Bases:
SciPyOptimizer
Constrained Optimization By Linear Approximation optimizer.
COBYLA is a numerical optimization method for constrained problems where the derivative of the objective function is not known.
Uses scipy.optimize.minimize COBYLA. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters:
maxiter (int) – Maximum number of function evaluations.
disp (bool) – Set to True to print convergence messages.
rhobeg (float) – Reasonable initial changes to the variables.
tol (float | None) – Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.
options (dict | None) – A dictionary of solver options.
kwargs – additional kwargs for scipy.optimize.minimize.
Attributes
- bounds_support_level#
Returns bounds support level
- gradient_support_level#
Returns gradient support level
- initial_point_support_level#
Returns initial point support level
- is_bounds_ignored#
Returns is bounds ignored
- is_bounds_required#
Returns is bounds required
- is_bounds_supported#
Returns is bounds supported
- is_gradient_ignored#
Returns is gradient ignored
- is_gradient_required#
Returns is gradient required
- is_gradient_supported#
Returns is gradient supported
- is_initial_point_ignored#
Returns is initial point ignored
- is_initial_point_required#
Returns is initial point required
- is_initial_point_supported#
Returns is initial point supported
- setting#
Return setting
- settings#
Methods
- get_support_level()#
Return support level dictionary
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)#
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)#
Minimize the scalar function.
- Parameters:
fun (Callable[[POINT], float]) – The scalar function to minimize.
x0 (POINT) – The initial point for the minimization.
jac (Callable[[POINT], POINT] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()#
Print algorithm-specific options.
- set_max_evals_grouped(limit)#
Set max evals grouped
- set_options(**kwargs)#
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.