SBPLX¶
- class SBPLX(max_evals=1000)[source]¶
Bases:
NLoptOptimizer
Subplex optimizer.
“Subplex (a variant of Nelder-Mead that uses Nelder-Mead on a sequence of subspaces) is claimed to be much more efficient and robust than the original Nelder-Mead, while retaining the latter’s facility with discontinuous objectives, and in my experience these claims seem to be true in many cases. (However, I’m not aware of any proof that Subplex is globally convergent, and perhaps it may fail for some objectives like Nelder-Mead; YMMV.)” Description by Steven G. Johnson, author of NLopt library.
NLopt local optimizer, derivative-free. For further detail, please refer to https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#sbplx-based-on-subplex
- Parameters:
max_evals (int) – Maximum allowed number of function evaluations.
- Raises:
MissingOptionalLibraryError – NLopt library not installed.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
Methods
- get_support_level()¶
return support level dictionary
- static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)¶
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters:
- Returns:
the gradient computed
- Return type:
grad
- minimize(fun, x0, jac=None, bounds=None)¶
Minimize the scalar function.
- Parameters:
fun (Callable[[float | ndarray], float]) – The scalar function to minimize.
x0 (float | ndarray) – The initial point for the minimization.
jac (Callable[[float | ndarray], float | ndarray] | None) – The gradient of the scalar function
fun
.bounds (list[tuple[float, float]] | None) – Bounds for the variables of
fun
. This argument might be ignored if the optimizer does not support bounds.
- Returns:
The result of the optimization, containing e.g. the result as attribute
x
.- Return type:
- print_options()¶
Print algorithm-specific options.
- set_max_evals_grouped(limit)¶
Set max evals grouped
- set_options(**kwargs)¶
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters:
kwargs (dict) – options, given as name=value.