SamplingVQEResult#

class SamplingVQEResult[source]#

Bases: VariationalResult, SamplingMinimumEigensolverResult

The SamplingVQE Result.

Attributes

aux_operators_evaluated#

Return aux operator expectation values and metadata.

These are formatted as (mean, metadata).

best_measurement#

Return the best measurement over the entire optimization.

Possesses keys: state, bitstring, value, probability.

cost_function_evals#

Returns number of cost optimizer evaluations

eigenstate#

Return the quasi-distribution sampled from the final state.

The ansatz is sampled when parameterized with the optimal parameters that where obtained computing the minimum eigenvalue. The keys represent a measured classical value and the value is a float for the quasi-probability of that result.

eigenvalue#

Return the approximation to the eigenvalue.

optimal_circuit#

The optimal circuits. Along with the optimal parameters, these can be used to retrieve the minimum eigenstate.

optimal_parameters#

Returns the optimal parameters in a dictionary

optimal_point#

Returns optimal point

optimal_value#

Returns optimal value

optimizer_evals#

Returns number of optimizer evaluations

optimizer_result#

Returns the optimizer result

optimizer_time#

Returns time taken for optimization

Methods

combine(result)#

Any property from the argument that exists in the receiver is updated. :param result: Argument result with properties to be set.

Raises:

TypeError – Argument is None