# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Base state fidelity interface
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from collections.abc import MutableMapping
from typing import cast, Sequence, List
import numpy as np
from qiskit import QuantumCircuit
from qiskit.circuit import ParameterVector
from qiskit.primitives.utils import _circuit_key
from ..algorithm_job import AlgorithmJob
[docs]class BaseStateFidelity(ABC):
r"""
An interface to calculate state fidelities (state overlaps) for pairs of
(parametrized) quantum circuits. The calculation depends on the particular
fidelity method implementation, but can be always defined as the state overlap:
.. math::
|\langle\psi(x)|\phi(y)\rangle|^2
where :math:`x` and :math:`y` are optional parametrizations of the
states :math:`\psi` and :math:`\phi` prepared by the circuits
``circuit_1`` and ``circuit_2``, respectively.
"""
def __init__(self) -> None:
# use cache for preventing unnecessary circuit compositions
self._circuit_cache: MutableMapping[tuple[int, int], QuantumCircuit] = {}
@staticmethod
def _preprocess_values(
circuits: QuantumCircuit | Sequence[QuantumCircuit],
values: Sequence[float] | Sequence[Sequence[float]] | None = None,
) -> Sequence[list[float]]:
"""
Checks whether the passed values match the shape of the parameters
of the corresponding circuits and formats values to 2D list.
Args:
circuits: List of circuits to be checked.
values: Parameter values corresponding to the circuits to be checked.
Returns:
A 2D value list if the values match the circuits, or an empty 2D list
if values is None.
Raises:
ValueError: if the number of parameter values doesn't match the number of
circuit parameters
TypeError: if the input values are not a sequence.
"""
if isinstance(circuits, QuantumCircuit):
circuits = [circuits]
if values is None:
for circuit in circuits:
if circuit.num_parameters != 0:
raise ValueError(
f"`values` cannot be `None` because circuit <{circuit.name}> has "
f"{circuit.num_parameters} free parameters."
)
return [[]]
else:
# Support ndarray
if isinstance(values, np.ndarray):
values = values.tolist()
if len(values) > 0 and isinstance(values[0], np.ndarray):
values = [v.tolist() for v in values]
if not isinstance(values, Sequence):
raise TypeError(
f"Expected a sequence of numerical parameter values, "
f"but got input type {type(values)} instead."
)
# ensure 2d
if len(values) > 0 and not isinstance(values[0], Sequence) or len(values) == 0:
values = [cast(List[float], values)]
# we explicitly cast the type here because mypy appears to be unable to understand the
# above few lines where we ensure that values are 2d
return cast(Sequence[List[float]], values)
def _check_qubits_match(self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit) -> None:
"""
Checks that the number of qubits of 2 circuits matches.
Args:
circuit_1: (Parametrized) quantum circuit.
circuit_2: (Parametrized) quantum circuit.
Raises:
ValueError: when ``circuit_1`` and ``circuit_2`` don't have the
same number of qubits.
"""
if circuit_1.num_qubits != circuit_2.num_qubits:
raise ValueError(
f"The number of qubits for the first circuit ({circuit_1.num_qubits}) "
f"and second circuit ({circuit_2.num_qubits}) are not the same."
)
[docs] @abstractmethod
def create_fidelity_circuit(
self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit
) -> QuantumCircuit:
"""
Implementation-dependent method to create a fidelity circuit
from 2 circuit inputs.
Args:
circuit_1: (Parametrized) quantum circuit.
circuit_2: (Parametrized) quantum circuit.
Returns:
The fidelity quantum circuit corresponding to ``circuit_1`` and ``circuit_2``.
"""
raise NotImplementedError
def _construct_circuits(
self,
circuits_1: QuantumCircuit | Sequence[QuantumCircuit],
circuits_2: QuantumCircuit | Sequence[QuantumCircuit],
) -> Sequence[QuantumCircuit]:
"""
Constructs the list of fidelity circuits to be evaluated.
These circuits represent the state overlap between pairs of input circuits,
and their construction depends on the fidelity method implementations.
Args:
circuits_1: (Parametrized) quantum circuits.
circuits_2: (Parametrized) quantum circuits.
Returns:
List of constructed fidelity circuits.
Raises:
ValueError: if the length of the input circuit lists doesn't match.
"""
if isinstance(circuits_1, QuantumCircuit):
circuits_1 = [circuits_1]
if isinstance(circuits_2, QuantumCircuit):
circuits_2 = [circuits_2]
if len(circuits_1) != len(circuits_2):
raise ValueError(
f"The length of the first circuit list({len(circuits_1)}) "
f"and second circuit list ({len(circuits_2)}) is not the same."
)
circuits = []
for circuit_1, circuit_2 in zip(circuits_1, circuits_2):
# Use the same key for circuits as qiskit.primitives use.
circuit = self._circuit_cache.get((_circuit_key(circuit_1), _circuit_key(circuit_2)))
if circuit is not None:
circuits.append(circuit)
else:
self._check_qubits_match(circuit_1, circuit_2)
# re-parametrize input circuits
# TODO: make smarter checks to avoid unnecessary re-parametrizations
parameters_1 = ParameterVector("x", circuit_1.num_parameters)
parametrized_circuit_1 = circuit_1.assign_parameters(parameters_1)
parameters_2 = ParameterVector("y", circuit_2.num_parameters)
parametrized_circuit_2 = circuit_2.assign_parameters(parameters_2)
circuit = self.create_fidelity_circuit(
parametrized_circuit_1, parametrized_circuit_2
)
circuits.append(circuit)
# update cache
self._circuit_cache[_circuit_key(circuit_1), _circuit_key(circuit_2)] = circuit
return circuits
def _construct_value_list(
self,
circuits_1: Sequence[QuantumCircuit],
circuits_2: Sequence[QuantumCircuit],
values_1: Sequence[float] | Sequence[Sequence[float]] | None = None,
values_2: Sequence[float] | Sequence[Sequence[float]] | None = None,
) -> list[list[float]]:
"""
Preprocesses input parameter values to match the fidelity
circuit parametrization, and return in list format.
Args:
circuits_1: (Parametrized) quantum circuits preparing the
first list of quantum states.
circuits_2: (Parametrized) quantum circuits preparing the
second list of quantum states.
values_1: Numerical parameters to be bound to the first circuits.
values_2: Numerical parameters to be bound to the second circuits.
Returns:
List of lists of parameter values for fidelity circuit.
"""
values_1 = self._preprocess_values(circuits_1, values_1)
values_2 = self._preprocess_values(circuits_2, values_2)
# now, values_1 and values_2 are explicitly made 2d lists
values = []
if len(values_2[0]) == 0:
values = list(values_1)
elif len(values_1[0]) == 0:
values = list(values_2)
else:
for val_1, val_2 in zip(values_1, values_2):
# the `+` operation concatenates the lists
# and then this new list gets appended to the values list
values.append(val_1 + val_2)
# values is guaranteed to be 2d
return values
@abstractmethod
def _run(
self,
circuits_1: QuantumCircuit | Sequence[QuantumCircuit],
circuits_2: QuantumCircuit | Sequence[QuantumCircuit],
values_1: Sequence[float] | Sequence[Sequence[float]] | None = None,
values_2: Sequence[float] | Sequence[Sequence[float]] | None = None,
**options,
) -> AlgorithmJob:
r"""
Computes the state overlap (fidelity) calculation between two
(parametrized) circuits (first and second) for a specific set of parameter
values (first and second).
Args:
circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`.
circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`.
values_1: Numerical parameters to be bound to the first set of circuits
values_2: Numerical parameters to be bound to the second set of circuits.
options: Primitive backend runtime options used for circuit execution. The order
of priority is\: options in ``run`` method > fidelity's default
options > primitive's default setting.
Higher priority setting overrides lower priority setting.
Returns:
A newly constructed algorithm job instance to get the fidelity result.
"""
raise NotImplementedError
[docs] def run(
self,
circuits_1: QuantumCircuit | Sequence[QuantumCircuit],
circuits_2: QuantumCircuit | Sequence[QuantumCircuit],
values_1: Sequence[float] | Sequence[Sequence[float]] | None = None,
values_2: Sequence[float] | Sequence[Sequence[float]] | None = None,
**options,
) -> AlgorithmJob:
r"""
Runs asynchronously the state overlap (fidelity) calculation between two
(parametrized) circuits (first and second) for a specific set of parameter
values (first and second). This calculation depends on the particular
fidelity method implementation.
Args:
circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`.
circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`.
values_1: Numerical parameters to be bound to the first set of circuits.
values_2: Numerical parameters to be bound to the second set of circuits.
options: Primitive backend runtime options used for circuit execution. The order
of priority is\: options in ``run`` method > fidelity's default
options > primitive's default setting.
Higher priority setting overrides lower priority setting.
Returns:
Primitive job for the fidelity calculation.
The job's result is an instance of :class:`.StateFidelityResult`.
"""
job = self._run(circuits_1, circuits_2, values_1, values_2, **options)
job.submit()
return job
@staticmethod
def _truncate_fidelities(fidelities: Sequence[float]) -> Sequence[float]:
"""
Ensures fidelity result in [0,1].
Args:
fidelities: Sequence of raw fidelity results.
Returns:
List of truncated fidelities.
"""
return np.clip(fidelities, 0, 1).tolist()