Source code for qiskit_algorithms.minimum_eigensolvers.vqe

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2025.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The variational quantum eigensolver algorithm."""

from __future__ import annotations

import logging
import warnings
from time import time
from collections.abc import Callable
from typing import Any, Iterable

import numpy as np

from qiskit.circuit import QuantumCircuit
from qiskit.primitives import BaseEstimatorV2
from qiskit.quantum_info import SparsePauliOp
from qiskit.quantum_info.operators.base_operator import BaseOperator

from qiskit_algorithms.gradients import BaseEstimatorGradient
from ..custom_types import Transpiler

from ..exceptions import AlgorithmError
from ..list_or_dict import ListOrDict
from ..optimizers import Optimizer, Minimizer, OptimizerResult
from ..variational_algorithm import VariationalAlgorithm, VariationalResult
from .minimum_eigensolver import MinimumEigensolver, MinimumEigensolverResult
from ..observables_evaluator import estimate_observables
from ..utils import validate_initial_point, validate_bounds

# private function as we expect this to be updated in the next released
from ..utils.set_batching import _set_default_batchsize

logger = logging.getLogger(__name__)


[docs] class VQE(VariationalAlgorithm, MinimumEigensolver): r"""The Variational Quantum Eigensolver (VQE) algorithm. VQE is a hybrid quantum-classical algorithm that uses a variational technique to find the minimum eigenvalue of a given Hamiltonian operator :math:`H`. The ``VQE`` algorithm is executed using an :attr:`estimator` primitive, which computes expectation values of operators (observables). An instance of ``VQE`` also requires an :attr:`ansatz`, a parameterized :class:`.QuantumCircuit`, to prepare the trial state :math:`|\psi(\vec\theta)\rangle`. It also needs a classical :attr:`optimizer` which varies the circuit parameters :math:`\vec\theta` such that the expectation value of the operator on the corresponding state approaches a minimum, .. math:: \min_{\vec\theta} \langle\psi(\vec\theta)|H|\psi(\vec\theta)\rangle. The :attr:`estimator` is used to compute this expectation value for every optimization step. The optimizer can either be one of Qiskit's optimizers, such as :class:`~qiskit_algorithms.optimizers.SPSA` or a callable with the following signature: .. code-block:: python from qiskit_algorithms.optimizers import OptimizerResult def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: # Note that the callable *must* have these argument names! # Args: # fun (callable): the function to minimize # x0 (np.ndarray): the initial point for the optimization # jac (callable, optional): the gradient of the objective function # bounds (list, optional): a list of tuples specifying the parameter bounds result = OptimizerResult() result.x = # optimal parameters result.fun = # optimal function value return result The above signature also allows one to use any SciPy minimizer, for instance as .. code-block:: python from functools import partial from scipy.optimize import minimize optimizer = partial(minimize, method="L-BFGS-B") The following attributes can be set via the initializer but can also be read and updated once the VQE object has been constructed. Attributes: estimator (BaseEstimatorV2): The estimator primitive to compute the expectation value of the Hamiltonian operator. optimizer (Optimizer | Minimizer): A classical optimizer to find the minimum energy. This can either be a Qiskit :class:`.Optimizer` or a callable implementing the :class:`.Minimizer` protocol. gradient (BaseEstimatorGradient | None): An optional estimator gradient to be used with the optimizer. callback (Callable[[int, np.ndarray, float, dict[str, Any]], None] | None): A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the evaluated mean, and the metadata dictionary. References: [1]: Peruzzo, A., et al, "A variational eigenvalue solver on a quantum processor" `arXiv:1304.3061 <https://arxiv.org/abs/1304.3061>`__ """ def __init__( self, estimator: BaseEstimatorV2, ansatz: QuantumCircuit, optimizer: Optimizer | Minimizer, *, gradient: BaseEstimatorGradient | None = None, initial_point: np.ndarray | None = None, callback: Callable[[int, np.ndarray, float, dict[str, Any]], None] | None = None, transpiler: Transpiler | None = None, transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: estimator: The estimator primitive to compute the expectation value of the Hamiltonian operator. ansatz: A parameterized quantum circuit to prepare the trial state. optimizer: A classical optimizer to find the minimum energy. This can either be a Qiskit :class:`.Optimizer` or a callable implementing the :class:`.Minimizer` protocol. gradient: An optional estimator gradient to be used with the optimizer. initial_point: An optional initial point (i.e. initial parameter values) for the optimizer. The length of the initial point must match the number of :attr:`ansatz` parameters. If ``None``, a random point will be generated within certain parameter bounds. ``VQE`` will look to the ansatz for these bounds. If the ansatz does not specify bounds, bounds of :math:`-2\pi`, :math:`2\pi` will be used. callback: A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the estimated value, and the metadata dictionary. transpiler: An optional object with a `run` method allowing to transpile the circuits that are run when using this algorithm. If set to `None`, these won't be transpiled. transpiler_options: A dictionary of options to be passed to the transpiler's `run` method as keyword arguments. """ super().__init__() self.estimator = estimator self._ansatz = ansatz # TODO: remove the following line once AdaptVQE doesn't use the EvolvedOperatorAnsatz class # anymore self._original_ansatz = ansatz self.optimizer = optimizer self.gradient = gradient # this has to go via getters and setters due to the VariationalAlgorithm interface self.initial_point = initial_point self.callback = callback self._transpiler = transpiler self._transpiler_options = transpiler_options if transpiler_options is not None else {} if self._transpiler is not None: self.ansatz = ansatz @property def initial_point(self) -> np.ndarray | None: return self._initial_point @initial_point.setter def initial_point(self, value: np.ndarray | None) -> None: self._initial_point = value @property def ansatz(self) -> QuantumCircuit: """ A parameterized quantum circuit to prepare the trial state. If a transpiler has been provided, the ansatz will be automatically transpiled upon being set. """ return self._ansatz @ansatz.setter def ansatz(self, value: QuantumCircuit | None) -> None: if self._transpiler is not None: self._ansatz = self._transpiler.run(value, **self._transpiler_options) else: self._ansatz = value
[docs] def compute_minimum_eigenvalue( self, operator: BaseOperator, aux_operators: ListOrDict[BaseOperator] | None = None, ) -> VQEResult: if self.ansatz.layout is not None: operator = operator.apply_layout(self.ansatz.layout) self._check_operator_ansatz(operator) initial_point = validate_initial_point(self.initial_point, self.ansatz) bounds = validate_bounds(self.ansatz) start_time = time() evaluate_energy = self._get_evaluate_energy(self.ansatz, operator) if self.gradient is not None: evaluate_gradient = self._get_evaluate_gradient(self.ansatz, operator) else: evaluate_gradient = None # perform optimization if callable(self.optimizer): optimizer_result = self.optimizer( fun=evaluate_energy, # type: ignore[arg-type] x0=initial_point, jac=evaluate_gradient, bounds=bounds, ) else: # we always want to submit as many estimations per job as possible for minimal # overhead on the hardware was_updated = _set_default_batchsize(self.optimizer) optimizer_result = self.optimizer.minimize( fun=evaluate_energy, # type: ignore[arg-type] x0=initial_point, jac=evaluate_gradient, # type: ignore[arg-type] bounds=bounds, ) # reset to original value if was_updated: self.optimizer.set_max_evals_grouped(None) optimizer_time = time() - start_time logger.info( "Optimization complete in %s seconds.\nFound optimal point %s", optimizer_time, optimizer_result.x, ) if aux_operators is not None: if self.ansatz.layout is not None: # We need to handle the array entries being zero or Optional i.e. having value None # len(self.ansatz.layout.final_index_layout()) is the original number of qubits in the # ansatz, before transpilation zero_op = SparsePauliOp.from_list( [("I" * len(self.ansatz.layout.final_index_layout()), 0)] ) key_op_iterator: Iterable[tuple[str | int, BaseOperator]] if isinstance(aux_operators, list): key_op_iterator = enumerate(aux_operators) converted: ListOrDict[BaseOperator] = [zero_op] * len(aux_operators) else: key_op_iterator = aux_operators.items() converted = {} for key, op in key_op_iterator: if op is not None: converted[key] = ( zero_op.apply_layout(self.ansatz.layout) if op == 0 else op.apply_layout(self.ansatz.layout) ) aux_operators = converted aux_operators_evaluated = estimate_observables( self.estimator, self.ansatz, aux_operators, optimizer_result.x, # type: ignore[arg-type] ) else: aux_operators_evaluated = None return self._build_vqe_result( self.ansatz, optimizer_result, aux_operators_evaluated, # type: ignore[arg-type] optimizer_time, )
[docs] @classmethod def supports_aux_operators(cls) -> bool: return True
def _get_evaluate_energy( self, ansatz: QuantumCircuit, operator: BaseOperator, ) -> Callable[[np.ndarray], np.ndarray | float]: """Returns a function handle to evaluate the energy at given parameters for the ansatz. This is the objective function to be passed to the optimizer that is used for evaluation. Args: ansatz: The ansatz preparing the quantum state. operator: The operator whose energy to evaluate. Returns: A callable that computes and returns the energy of the hamiltonian of each parameter. Raises: AlgorithmError: If the primitive job to evaluate the energy fails. """ num_parameters = ansatz.num_parameters # avoid creating an instance variable to remain stateless regarding results eval_count = 0 def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float: nonlocal eval_count # handle broadcasting: ensure parameters is of shape [array, array, ...] parameters = np.reshape(parameters, (-1, num_parameters)) try: job = self.estimator.run([(ansatz, operator, parameters)]) estimator_result = job.result()[0] except Exception as exc: raise AlgorithmError("The primitive job to evaluate the energy failed!") from exc values = estimator_result.data.evs if not values.shape: values = values.reshape(1) if self.callback is not None: for params, value in zip(parameters.reshape(-1, 1), values): eval_count += 1 self.callback(eval_count, params, value, estimator_result.metadata) energy = values[0] if len(values) == 1 else values return energy return evaluate_energy def _get_evaluate_gradient( self, ansatz: QuantumCircuit, operator: BaseOperator, ) -> Callable[[np.ndarray], np.ndarray]: """Get a function handle to evaluate the gradient at given parameters for the ansatz. Args: ansatz: The ansatz preparing the quantum state. operator: The operator whose energy to evaluate. Returns: A function handle to evaluate the gradient at given parameters for the ansatz. Raises: AlgorithmError: If the primitive job to evaluate the gradient fails. """ def evaluate_gradient(parameters: np.ndarray) -> np.ndarray: # broadcasting not required for the estimator gradients try: job = self.gradient.run( [ansatz], [operator], [parameters] # type: ignore[list-item] ) gradients = job.result().gradients except Exception as exc: raise AlgorithmError("The primitive job to evaluate the gradient failed!") from exc return gradients[0] return evaluate_gradient def _check_operator_ansatz(self, operator: BaseOperator): """Check that the number of qubits of operator and ansatz match and that the ansatz is parameterized. """ if operator.num_qubits != self.ansatz.num_qubits: try: logger.info( "Trying to resize ansatz to match operator on %s qubits.", operator.num_qubits ) self.ansatz.num_qubits = operator.num_qubits warnings.warn( "Previously, it was possible to pass to VQE a BlueprintCircuit as an " "ansatz without its number of qubits being set, the algorithm taking care " "of setting it. Since BlueprintCircuits are now deprecated, and those " "being the only ones that can have their number of qubits set after their " "initialization, this behavior is now also deprecated, and won't be " "supported once the oldest supported Qiskit version is 3.0. As such, users " "that made use of this feature would now need to ensure that the ansatz " "they pass to these algorithms have their number of qubits set and matching " "with that of the operator they wish to run the algorithm on.", category=DeprecationWarning, ) except AttributeError as error: raise AlgorithmError( "The number of qubits of the ansatz does not match the " "operator, and the ansatz does not allow setting the " "number of qubits using `num_qubits`." ) from error if self.ansatz.num_parameters == 0: raise AlgorithmError("The ansatz must be parameterized, but has no free parameters.") def _build_vqe_result( self, ansatz: QuantumCircuit, optimizer_result: OptimizerResult, aux_operators_evaluated: ListOrDict[tuple[complex, tuple[complex, int]]], optimizer_time: float, ) -> VQEResult: result = VQEResult() result.optimal_circuit = ansatz.copy() result.eigenvalue = optimizer_result.fun result.cost_function_evals = optimizer_result.nfev result.optimal_point = optimizer_result.x # type: ignore[assignment] result.optimal_parameters = dict( zip(self.ansatz.parameters, optimizer_result.x) # type: ignore[arg-type] ) result.optimal_value = optimizer_result.fun result.optimizer_time = optimizer_time result.aux_operators_evaluated = aux_operators_evaluated # type: ignore[assignment] result.optimizer_result = optimizer_result return result
[docs] class VQEResult(VariationalResult, MinimumEigensolverResult): """The Variational Quantum Eigensolver (VQE) result.""" def __init__(self) -> None: super().__init__() self._cost_function_evals: int | None = None @property def cost_function_evals(self) -> int | None: """The number of cost optimizer evaluations.""" return self._cost_function_evals @cost_function_evals.setter def cost_function_evals(self, value: int) -> None: self._cost_function_evals = value