Source code for qiskit_algorithms.amplitude_estimators.fae

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2017, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Faster Amplitude Estimation."""

from __future__ import annotations
from typing import cast, Tuple
import warnings
import numpy as np

from qiskit.circuit import QuantumCircuit, ClassicalRegister
from qiskit.primitives import BaseSampler, Sampler
from qiskit_algorithms.exceptions import AlgorithmError

from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult
from .estimation_problem import EstimationProblem


[docs]class FasterAmplitudeEstimation(AmplitudeEstimator): """The Faster Amplitude Estimation algorithm. The Faster Amplitude Estimation (FAE) [1] algorithm is a variant of Quantum Amplitude Estimation (QAE), where the Quantum Phase Estimation (QPE) by an iterative Grover search, similar to [2]. Due to the iterative version of the QPE, this algorithm does not require any additional qubits, as the originally proposed QAE [3] and thus the resulting circuits are less complex. References: [1]: K. Nakaji. Faster Amplitude Estimation, 2020; `arXiv:2002.02417 <https://arxiv.org/pdf/2003.02417.pdf>`_ [2]: D. Grinko et al. Iterative Amplitude Estimation, 2019; `arXiv:1912.05559 <http://arxiv.org/abs/1912.05559>`_ [3]: G. Brassard et al. Quantum Amplitude Amplification and Estimation, 2000; `arXiv:quant-ph/0005055 <http://arxiv.org/abs/quant-ph/0005055>`_ """ def __init__( self, delta: float, maxiter: int, rescale: bool = True, sampler: BaseSampler | None = None, ) -> None: r""" Args: delta: The probability that the true value is outside of the final confidence interval. maxiter: The number of iterations, the maximal power of Q is `2 ** (maxiter - 1)`. rescale: Whether to rescale the problem passed to `estimate`. sampler: A sampler primitive to evaluate the circuits. """ super().__init__() self._shots = (int(1944 * np.log(2 / delta)), int(972 * np.log(2 / delta))) self._rescale = rescale self._delta = delta self._maxiter = maxiter self._num_oracle_calls = 0 self._sampler = sampler @property def sampler(self) -> BaseSampler | None: """Get the sampler primitive. Returns: The sampler primitive to evaluate the circuits. """ return self._sampler @sampler.setter def sampler(self, sampler: BaseSampler) -> None: """Set sampler primitive. Args: sampler: A sampler primitive to evaluate the circuits. """ self._sampler = sampler def _cos_estimate(self, estimation_problem, k, shots): if self._sampler is None: warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") self._sampler = Sampler() circuit = self.construct_circuit(estimation_problem, k, measurement=True) try: job = self._sampler.run([circuit], shots=shots) result = job.result() except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc if shots is None: shots = 1 self._num_oracle_calls += (2 * k + 1) * shots # sum over all probabilities where the objective qubits are 1 prob = 0 for bit, probabilities in result.quasi_dists[0].binary_probabilities().items(): # check if it is a good state if estimation_problem.is_good_state(bit): prob += probabilities cos_estimate = 1 - 2 * prob return cos_estimate def _chernoff(self, cos, shots) -> list[float]: width = np.sqrt(np.log(2 / self._delta) * 12 / shots) confint = [np.maximum(-1, cos - width), np.minimum(1, cos + width)] return confint
[docs] def construct_circuit( self, estimation_problem: EstimationProblem, k: int, measurement: bool = False ) -> QuantumCircuit | tuple[QuantumCircuit, list[int]]: r"""Construct the circuit :math:`Q^k X |0\rangle>`. The A operator is the unitary specifying the QAE problem and Q the associated Grover operator. Args: estimation_problem: The estimation problem for which to construct the circuit. k: The power of the Q operator. measurement: Boolean flag to indicate if measurements should be included in the circuits. Returns: The circuit :math:`Q^k X |0\rangle`. """ num_qubits = max( estimation_problem.state_preparation.num_qubits, estimation_problem.grover_operator.num_qubits, ) circuit = QuantumCircuit(num_qubits, name="circuit") # add classical register if needed if measurement: c = ClassicalRegister(len(estimation_problem.objective_qubits)) circuit.add_register(c) # add A operator circuit.compose(estimation_problem.state_preparation, inplace=True) # add Q^k if k != 0: circuit.compose(estimation_problem.grover_operator.power(k), inplace=True) # add optional measurement if measurement: # real hardware can currently not handle operations after measurements, which might # happen if the circuit gets transpiled, hence we're adding a safeguard-barrier circuit.barrier() circuit.measure(estimation_problem.objective_qubits, c[:]) return circuit
[docs] def estimate(self, estimation_problem: EstimationProblem) -> "FasterAmplitudeEstimationResult": """Run the amplitude estimation algorithm on provided estimation problem. Args: estimation_problem: The estimation problem. Returns: An amplitude estimation results object. Raises: AlgorithmError: Sampler run error. """ if self._sampler is None: warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") self._sampler = Sampler() self._num_oracle_calls = 0 if self._rescale: problem = estimation_problem.rescale(0.25) else: problem = estimation_problem theta_ci = [0, np.arcsin(0.25)] first_stage = True j_0 = self._maxiter theta_cis = [theta_ci] num_first_stage_steps = 0 num_steps = 0 def cos_estimate(power, shots): return self._cos_estimate(problem, power, shots) # v is first defined in an if below and referenced after in the else where static analysis # e.g. lint, may determine that v might not be defined before used. So this defines it here # to avoid lint error. Note the code cannot exit the first stage path until its defined so # this value here will never get used in practice. v = 0 for j in range(1, self._maxiter + 1): num_steps += 1 if first_stage: num_first_stage_steps += 1 c = cos_estimate(2 ** (j - 1), self._shots[0]) chernoff_ci = self._chernoff(c, self._shots[0]) theta_ci = [np.arccos(x) / (2 ** (j + 1) + 2) for x in chernoff_ci[::-1]] if 2 ** (j + 1) * theta_ci[1] >= 3 * np.pi / 8 and j < self._maxiter: j_0 = j v = 2**j * np.sum(theta_ci) first_stage = False else: cos = cos_estimate(2 ** (j - 1), self._shots[1]) cos_2 = cos_estimate(2 ** (j - 1) + 2 ** (j_0 - 1), self._shots[1]) sin = (cos * np.cos(v) - cos_2) / np.sin(v) rho = np.arctan2(sin, cos) n = int(((2 ** (j + 1) + 2) * theta_ci[1] - rho + np.pi / 3) / (2 * np.pi)) theta_ci = [ (2 * np.pi * n + rho + sign * np.pi / 3) / (2 ** (j + 1) + 2) for sign in [-1, 1] ] theta_cis.append(theta_ci) theta = np.mean(theta_ci) rescaling = 4 if self._rescale else 1 value = (rescaling * np.sin(theta)) ** 2 value_ci = ((rescaling * np.sin(theta_ci[0])) ** 2, (rescaling * np.sin(theta_ci[1])) ** 2) result = FasterAmplitudeEstimationResult() result.num_oracle_queries = self._num_oracle_calls result.num_steps = num_steps result.num_first_state_steps = num_first_stage_steps result.success_probability = 1 - (2 * self._maxiter - j_0) * self._delta result.estimation = value result.estimation_processed = problem.post_processing(value) # type: ignore[assignment] result.confidence_interval = value_ci result.confidence_interval_processed = cast( Tuple[float, float], (problem.post_processing(x) for x in value_ci) ) result.theta_intervals = theta_cis return result
[docs]class FasterAmplitudeEstimationResult(AmplitudeEstimatorResult): """The result object for the Faster Amplitude Estimation algorithm.""" def __init__(self) -> None: super().__init__() self._success_probability: float | None = None self._num_steps: int | None = None self._num_first_state_steps: int | None = None self._theta_intervals: list[list[float]] | None = None @property def success_probability(self) -> float: """Return the success probability of the algorithm.""" return self._success_probability @success_probability.setter def success_probability(self, probability: float) -> None: """Set the success probability of the algorithm.""" self._success_probability = probability @property def num_steps(self) -> int: """Return the total number of steps taken in the algorithm.""" return self._num_steps @num_steps.setter def num_steps(self, num_steps: int) -> None: """Set the total number of steps taken in the algorithm.""" self._num_steps = num_steps @property def num_first_state_steps(self) -> int: """Return the number of steps taken in the first step of algorithm.""" return self._num_first_state_steps @num_first_state_steps.setter def num_first_state_steps(self, num_steps: int) -> None: """Set the number of steps taken in the first step of algorithm.""" self._num_first_state_steps = num_steps @property def theta_intervals(self) -> list[list[float]]: """Return the confidence intervals for the angles in each iteration.""" return self._theta_intervals @theta_intervals.setter def theta_intervals(self, value: list[list[float]]) -> None: """Set the confidence intervals for the angles in each iteration.""" self._theta_intervals = value