Quantum State Tomography¶
Quantum tomography is an experimental procedure to reconstruct a description of part of a quantum system from the measurement outcomes of a specific set of experiments. In particular, quantum state tomography reconstructs the density matrix of a quantum state by preparing the state many times and measuring them in a tomographically complete basis of measurement operators.
Note
This tutorial requires the qiskit-aer and qiskit-ibm-runtime
packages to run simulations. You can install them with python -m pip
install qiskit-aer qiskit-ibm-runtime
.
We first initialize a simulator to run the experiments on.
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime.fake_provider import FakePerth
backend = AerSimulator.from_backend(FakePerth())
To run a state tomography experiment, we initialize the experiment with a circuit to
prepare the state to be measured. We can also pass in an
Operator
or a Statevector
to describe the preparation circuit.
import qiskit
from qiskit_experiments.framework import ParallelExperiment
from qiskit_experiments.library import StateTomography
# GHZ State preparation circuit
nq = 2
qc_ghz = qiskit.QuantumCircuit(nq)
qc_ghz.h(0)
qc_ghz.s(0)
for i in range(1, nq):
qc_ghz.cx(0, i)
# QST Experiment
qstexp1 = StateTomography(qc_ghz)
qstdata1 = qstexp1.run(backend, seed_simulation=100).block_for_results()
# Print results
display(qstdata1.analysis_results(dataframe=True))
name | experiment | components | value | quality | backend | run_time | trace | eigvals | raw_eigvals | rescaled_psd | fitter_metadata | conditional_probability | positive | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
152f802d | state | StateTomography | [Q0, Q1] | DensityMatrix([[ 0.47477214+0.j , 0.00... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9161183509870341, 0.04749004975662149, 0.02... | [0.9161183509870341, 0.04749004975662149, 0.02... | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
c310f8e2 | state_fidelity | StateTomography | [Q0, Q1] | 0.914551 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
ad1fc9d9 | positive | StateTomography | [Q0, Q1] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
Tomography Results¶
The main result for tomography is the fitted state, which is stored as a
DensityMatrix
object:
state_result = qstdata1.analysis_results("state", dataframe=True).iloc[0]
print(state_result.value)
DensityMatrix([[ 0.47477214+0.j , 0.00683594-0.01611328j,
0.00651042+0.02132161j, -0.00732422-0.44726562j],
[ 0.00683594+0.01611328j, 0.02750651+0.j ,
0.01220703-0.00195312j, 0.00651042-0.00309245j],
[ 0.00651042-0.02132161j, 0.01220703+0.00195312j,
0.03792318+0.j , -0.02246094+0.00048828j],
[-0.00732422+0.44726562j, 0.00651042+0.00309245j,
-0.02246094-0.00048828j, 0.45979818+0.j ]],
dims=(2, 2))
We can also visualize the density matrix:
from qiskit.visualization import plot_state_city
state = qstdata1.analysis_results("state", dataframe=True).iloc[0].value
plot_state_city(state, title='Density Matrix')

The state fidelity of the fitted state with the ideal state prepared by
the input circuit is stored in the "state_fidelity"
result field.
Note that if the input circuit contained any measurements the ideal
state cannot be automatically generated and this field will be set to
None
.
fid_result = qstdata1.analysis_results("state_fidelity", dataframe=True).iloc[0]
print("State Fidelity = {:.5f}".format(fid_result.value))
State Fidelity = 0.91455
Additional state metadata¶
Additional data is stored in the tomography under additional fields. This includes
eigvals
: the eigenvalues of the fitted statetrace
: the trace of the fitted statepositive
: Whether the eigenvalues are all non-negative
If trace rescaling was performed this dictionary will also contain a raw_trace
field
containing the trace before rescaling. Futhermore, if the state was rescaled to be
positive or trace 1 an additional field raw_eigvals
will contain the state
eigenvalues before rescaling was performed.
for col in ["eigvals", "trace", "positive"]:
print(f"{col}: {state_result[col]}")
eigvals: [0.91611835 0.04749005 0.02336872 0.01302288]
trace: 1.0000000000000016
positive: True
To see the effect of rescaling, we can perform a “bad” fit with very low counts:
# QST Experiment
bad_data = qstexp1.run(backend, shots=10, seed_simulation=100).block_for_results()
bad_state_result = bad_data.analysis_results("state", dataframe=True).iloc[0]
# Print result
for key, val in bad_state_result.items():
print(f"{key}: {val}")
name: state
experiment: StateTomography
components: [<Qubit(Q0)>, <Qubit(Q1)>]
value: DensityMatrix([[ 0.44821797+0.00000000e+00j, -0.09640526-1.51481655e-01j,
0.00203485-5.31097116e-02j, -0.01100238-3.88870802e-01j],
[-0.09640526+1.51481655e-01j, 0.11305966+1.73472348e-18j,
0.03602698-1.79217234e-02j, 0.15538061+3.31586074e-02j],
[ 0.00203485+5.31097116e-02j, 0.03602698+1.79217234e-02j,
0.03656753+0.00000000e+00j, 0.08989397-8.35621624e-03j],
[-0.01100238+3.88870802e-01j, 0.15538061-3.31586074e-02j,
0.08989397+8.35621624e-03j, 0.40215484+0.00000000e+00j]],
dims=(2, 2))
quality: None
backend: aer_simulator_from(fake_perth)
run_time: None
trace: 1.0000000000000002
eigvals: [0.89974152 0.10025848 0. 0. ]
raw_eigvals: [ 0.99273195 0.19324891 -0.0052429 -0.18073796]
rescaled_psd: True
fitter_metadata: {'fitter': 'linear_inversion', 'fitter_time': 0.0036444664001464844}
conditional_probability: 1.0
positive: True
Tomography Fitters¶
The default fitters is linear_inversion
, which reconstructs the
state using dual basis of the tomography basis. This will typically
result in a non-positive reconstructed state. This state is rescaled to
be positive-semidefinite (PSD) by computing its eigen-decomposition and
rescaling its eigenvalues using the approach from Ref. [1].
There are several other fitters are included (See API documentation for
details). For example, if cvxpy
is installed we can use the
cvxpy_gaussian_lstsq()
fitter, which allows constraining the fit to be
PSD without requiring rescaling.
try:
import cvxpy
# Set analysis option for cvxpy fitter
qstexp1.analysis.set_options(fitter='cvxpy_gaussian_lstsq')
# Re-run experiment
qstdata2 = qstexp1.run(backend, seed_simulation=100).block_for_results()
state_result2 = qstdata2.analysis_results("state", dataframe=True).iloc[0]
for key, val in state_result2.items():
print(f"{key}: {val}")
except ModuleNotFoundError:
print("CVXPY is not installed")
name: state
experiment: StateTomography
components: [<Qubit(Q0)>, <Qubit(Q1)>]
value: DensityMatrix([[ 0.45923303+0.j , -0.0045762 +0.00134729j,
-0.00565893-0.009983j , -0.00595507-0.43820044j],
[-0.0045762 -0.00134729j, 0.02996372+0.j ,
-0.01280257+0.00527123j, 0.00645056+0.00853883j],
[-0.00565893+0.009983j , -0.01280257-0.00527123j,
0.03855425+0.j , -0.00693283-0.00908521j],
[-0.00595507+0.43820044j, 0.00645056-0.00853883j,
-0.00693283+0.00908521j, 0.472249 +0.j ]],
dims=(2, 2))
quality: None
backend: aer_simulator_from(fake_perth)
run_time: None
trace: 0.9999999976684613
eigvals: [0.90415892 0.05767847 0.02312496 0.01503765]
raw_eigvals: [0.90415892 0.05767847 0.02312496 0.01503765]
rescaled_psd: False
fitter_metadata: {'fitter': 'cvxpy_gaussian_lstsq', 'cvxpy_solver': 'SCS', 'cvxpy_status': ['optimal'], 'psd_constraint': True, 'trace_preserving': True, 'fitter_time': 0.031495094299316406}
conditional_probability: 1.0
positive: True
Parallel Tomography Experiment¶
We can also use the ParallelExperiment
class to
run subsystem tomography on multiple qubits in parallel.
For example if we want to perform 1-qubit QST on several qubits at once:
from math import pi
num_qubits = 5
gates = [qiskit.circuit.library.RXGate(i * pi / (num_qubits - 1))
for i in range(num_qubits)]
subexps = [
StateTomography(gate, physical_qubits=(i,))
for i, gate in enumerate(gates)
]
parexp = ParallelExperiment(subexps)
pardata = parexp.run(backend, seed_simulation=100).block_for_results()
display(pardata.analysis_results(dataframe=True))
name | experiment | components | value | quality | backend | run_time | trace | eigvals | raw_eigvals | rescaled_psd | fitter_metadata | conditional_probability | positive | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18635584 | state | StateTomography | [Q0] | DensityMatrix([[0.9765625 +0.j , 0.0107... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9767325676309926, 0.02326743236900829] | [0.9767325676309926, 0.02326743236900829] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
8daa7697 | state_fidelity | StateTomography | [Q0] | 0.976562 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
0baaad87 | positive | StateTomography | [Q0] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
b7ad7565 | state | StateTomography | [Q1] | DensityMatrix([[0.828125 +0.j , 0.00781... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9781128725994654, 0.021887127400535417] | [0.9781128725994654, 0.021887127400535417] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
7eacf0e5 | state_fidelity | StateTomography | [Q1] | 0.97785 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
8f5c964d | positive | StateTomography | [Q1] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
9797128a | state | StateTomography | [Q2] | DensityMatrix([[ 0.50097656+0.j , -0.00... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9697438195244785, 0.030256180475522476] | [0.9697438195244785, 0.030256180475522476] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
bb73cadf | state_fidelity | StateTomography | [Q2] | 0.969727 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
1e5e5531 | positive | StateTomography | [Q2] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
54ee8a13 | state | StateTomography | [Q3] | DensityMatrix([[0.16601563+0.j , 0.0136... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9569237737544116, 0.04307622624558921] | [0.9569237737544116, 0.04307622624558921] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
b29d408f | state_fidelity | StateTomography | [Q3] | 0.956443 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
5ca6013e | positive | StateTomography | [Q3] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
c68a4792 | state | StateTomography | [Q4] | DensityMatrix([[ 0.02929688+0.j , -0.01... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9709968125545261, 0.02900318744547488] | [0.9709968125545261, 0.02900318744547488] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
c29bbec1 | state_fidelity | StateTomography | [Q4] | 0.970703 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
2606aa3d | positive | StateTomography | [Q4] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
View experiment analysis results for one component:
results = pardata.analysis_results(dataframe=True)
display(results[results.components.apply(lambda x: x == ["Q0"])])
name | experiment | components | value | quality | backend | run_time | trace | eigvals | raw_eigvals | rescaled_psd | fitter_metadata | conditional_probability | positive | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18635584 | state | StateTomography | [Q0] | DensityMatrix([[0.9765625 +0.j , 0.0107... | None | aer_simulator_from(fake_perth) | None | 1.0 | [0.9767325676309926, 0.02326743236900829] | [0.9767325676309926, 0.02326743236900829] | False | {'fitter': 'linear_inversion', 'fitter_time': ... | 1.0 | True |
8daa7697 | state_fidelity | StateTomography | [Q0] | 0.976562 | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
0baaad87 | positive | StateTomography | [Q0] | True | None | aer_simulator_from(fake_perth) | None | None | None | None | None | None | None | None |
References¶
See also¶
API documentation:
StateTomography