Source code for qiskit_experiments.library.randomized_benchmarking.standard_rb
# This code is part of Qiskit.## (C) Copyright IBM 2021.## This code is licensed under the Apache License, Version 2.0. You may# obtain a copy of this license in the LICENSE.txt file in the root directory# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.## Any modifications or derivative works of this code must retain this# copyright notice, and modified files need to carry a notice indicating# that they have been altered from the originals."""Standard RB Experiment class."""importfunctoolsimportloggingfromcollectionsimportdefaultdictfromnumbersimportIntegralfromtypingimportUnion,Iterable,Optional,List,Sequence,Dict,Anyimportnumpyasnpimportrustworkxasrxfromnumpy.randomimportGenerator,default_rngfromnumpy.random.bit_generatorimportBitGenerator,SeedSequencefromqiskit.circuitimportCircuitInstruction,QuantumCircuit,Instruction,Barrier,Gatefromqiskit.exceptionsimportQiskitErrorfromqiskit.providers.backendimportBackend,BackendV2fromqiskit.quantum_infoimportCliffordfromqiskit.quantum_info.randomimportrandom_cliffordfromqiskit.transpilerimportCouplingMaptry:fromqiskit.providersimportBackendV2Converterfromqiskit.providers.backendimportBackendV1exceptImportError:BackendV1=NoneBackendV2Converter=Nonefromqiskit_experiments.frameworkimportBaseExperiment,Optionsfrom.clifford_utilsimport(CliffordUtils,DEFAULT_SYNTHESIS_METHOD,compose_1q,compose_2q,inverse_1q,inverse_2q,_clifford_1q_int_to_instruction,_clifford_2q_int_to_instruction,_clifford_to_instruction,_transpile_clifford_circuit,)from.rb_analysisimportRBAnalysisLOG=logging.getLogger(__name__)SequenceElementType=Union[Clifford,Integral,QuantumCircuit]
[docs]classStandardRB(BaseExperiment):"""An experiment to characterize the error rate of a gate set on a device. # section: overview Randomized Benchmarking (RB) is an efficient and robust method for estimating the average error rate of a set of quantum gate operations. See `Qiskit Textbook <https://github.com/Qiskit/textbook/blob/main/notebooks/quantum-hardware/randomized-benchmarking.ipynb>`_ for an explanation on the RB method. A standard RB experiment generates sequences of random Cliffords such that the unitary computed by the sequences is the identity. After running the sequences on a backend, it calculates the probabilities to get back to the ground state, fits an exponentially decaying curve, and estimates the Error Per Clifford (EPC), as described in Refs. [1, 2]. .. note:: In 0.5.0, the default value of ``optimization_level`` in ``transpile_options`` changed from ``0`` to ``1`` for RB experiments. That may result in shorter RB circuits hence slower decay curves than before. # section: analysis_ref :class:`RBAnalysis` # section: manual :doc:`/manuals/verification/randomized_benchmarking` # section: reference .. ref_arxiv:: 1 1009.3639 .. ref_arxiv:: 2 1109.6887 # section: example .. jupyter-execute:: :hide-code: # backend from qiskit_aer import AerSimulator from qiskit_ibm_runtime.fake_provider import FakePerth backend = AerSimulator.from_backend(FakePerth()) .. jupyter-execute:: import numpy as np from qiskit_experiments.library import StandardRB, InterleavedRB from qiskit_experiments.framework import ParallelExperiment, BatchExperiment import qiskit.circuit.library as circuits lengths_2_qubit = np.arange(1, 200, 30) lengths_1_qubit = np.arange(1, 800, 200) num_samples = 10 seed = 1010 qubits = (1, 2) # Run a 1-qubit RB experiment on qubits 1, 2 to determine the error-per-gate of 1-qubit gates single_exps = BatchExperiment( [ StandardRB((qubit,), lengths_1_qubit, num_samples=num_samples, seed=seed) for qubit in qubits ] ) expdata_1q = single_exps.run(backend=backend).block_for_results() exp_2q = StandardRB(qubits, lengths_2_qubit, num_samples=num_samples, seed=seed) # Use the EPG data of the 1-qubit runs to ensure correct 2-qubit EPG computation exp_2q.analysis.set_options(epg_1_qubit=expdata_1q.analysis_results(dataframe=True)) expdata_2q = exp_2q.run(backend=backend).block_for_results() results_2q = expdata_2q.analysis_results(dataframe=True) print("Gate error ratio: %s" % expdata_2q.experiment.analysis.options.gate_error_ratio) display(expdata_2q.figure(0)) print(f"Available results: {set(results_2q.name)}") """def__init__(self,physical_qubits:Sequence[int],lengths:Iterable[int],backend:Optional[Backend]=None,num_samples:int=3,seed:Optional[Union[int,SeedSequence,BitGenerator,Generator]]=None,full_sampling:Optional[bool]=False,):"""Initialize a standard randomized benchmarking experiment. Args: physical_qubits: List of physical qubits for the experiment. lengths: A list of RB sequences lengths. backend: The backend to run the experiment on. num_samples: Number of samples to generate for each sequence length. seed: Optional, seed used to initialize ``numpy.random.default_rng``. when generating circuits. The ``default_rng`` will be initialized with this seed value every time :meth:`circuits` is called. full_sampling: If True all Cliffords are independently sampled for all lengths. If False for sample of lengths longer sequences are constructed by appending additional samples to shorter sequences. The default is False. Raises: QiskitError: If any invalid argument is supplied. """# Initialize base experimentsuper().__init__(physical_qubits,analysis=RBAnalysis(),backend=backend)# Verify parametersifany(length<=0forlengthinlengths):raiseQiskitError(f"The lengths list {lengths} should only contain ""positive elements.")iflen(set(lengths))!=len(lengths):raiseQiskitError(f"The lengths list {lengths} should not contain ""duplicate elements.")ifnum_samples<=0:raiseQiskitError(f"The number of samples {num_samples} should ""be positive.")# Set configurable optionsself.set_experiment_options(lengths=sorted(lengths),num_samples=num_samples,seed=seed,full_sampling=full_sampling)self.analysis.set_options(outcome="0"*self.num_qubits)@classmethoddef_default_experiment_options(cls)->Options:"""Default experiment options. Experiment Options: lengths (List[int]): A list of RB sequences lengths. num_samples (int): Number of samples to generate for each sequence length. seed (None or int or SeedSequence or BitGenerator or Generator): A seed used to initialize ``numpy.random.default_rng`` when generating circuits. The ``default_rng`` will be initialized with this seed value every time :meth:`circuits` is called. full_sampling (bool): If True all Cliffords are independently sampled for all lengths. If False for sample of lengths longer sequences are constructed by appending additional Clifford samples to shorter sequences. clifford_synthesis_method (str): The name of the Clifford synthesis plugin to use for building circuits of RB sequences. """options=super()._default_experiment_options()options.update_options(lengths=None,num_samples=None,seed=None,full_sampling=None,clifford_synthesis_method=DEFAULT_SYNTHESIS_METHOD,)returnoptions@classmethoddef_default_transpile_options(cls)->Options:"""Default transpiler options for transpiling RB circuits."""returnOptions(optimization_level=1)def_set_backend(self,backend:Backend):"""Set the backend V2 for RB experiments since RB experiments only support BackendV2 except for simulators. If BackendV1 is provided, it is converted to V2 and stored. """if(BackendV1isnotNoneandisinstance(backend,BackendV1)and"simulator"notinbackend.name()):super()._set_backend(BackendV2Converter(backend,add_delay=True))else:super()._set_backend(backend)
[docs]defcircuits(self)->List[QuantumCircuit]:"""Return a list of RB circuits. Returns: A list of :class:`QuantumCircuit`. """# Sample random Clifford sequencessequences=self._sample_sequences()# Convert each sequence into circuit and append the inverse to the end.circuits=self._sequences_to_circuits(sequences)# Add metadata for each circuitforcirc,seqinzip(circuits,sequences):circ.metadata={"xval":len(seq),"group":"Clifford",}returncircuits
def_sample_sequences(self)->List[Sequence[SequenceElementType]]:"""Sample RB sequences Returns: A list of RB sequences. """rng=default_rng(seed=self.experiment_options.seed)sequences=[]ifself.experiment_options.full_sampling:for_inrange(self.experiment_options.num_samples):forlengthinself.experiment_options.lengths:sequences.append(self.__sample_sequence(length,rng))else:for_inrange(self.experiment_options.num_samples):longest_seq=self.__sample_sequence(max(self.experiment_options.lengths),rng)forlengthinself.experiment_options.lengths:sequences.append(longest_seq[:length])returnsequencesdef_get_synthesis_options(self)->Dict[str,Optional[Any]]:"""Get options for Clifford synthesis from the backend information as a dictionary. The options include: - "basis_gates": Sorted basis gate names. Return None if no basis gates are supplied via ``backend`` or ``transpile_options``. - "coupling_tuple": Reduced coupling map in the form of tuple of edges in the coupling graph. Return None if no coupling map are supplied via ``backend`` or ``transpile_options``. Returns: Synthesis options as a dictionary. """basis_gates=self.transpile_options.get("basis_gates",[])coupling_map=self.transpile_options.get("coupling_map",None)ifcoupling_map:coupling_map=coupling_map.reduce(self.physical_qubits)ifnot(basis_gatesandcoupling_map)andself.backend:ifisinstance(self.backend,BackendV2)and"simulator"inself.backend.name:ifnotbasis_gates:basis_gates=[op.nameforopinself.backend.target.operationsifisinstance(op,Gate)]coupling_map=coupling_mapifcoupling_mapelseNoneelifisinstance(self.backend,BackendV2):gate_ops=[opforopinself.backend.target.operationsifisinstance(op,Gate)]backend_basis_gates=[op.nameforopingate_opsifop.num_qubits!=2]backend_cmap=Noneforopingate_ops:ifop.num_qubits!=2:continuecmap=self.backend.target.build_coupling_map(op.name)ifcmapisNone:backend_basis_gates.append(op.name)else:reduced=cmap.reduce(self.physical_qubits)ifrx.is_weakly_connected(reduced.graph):backend_basis_gates.append(op.name)backend_cmap=reduced# take the first non-global 2q gate if backend has multiple 2q gatesbreakbasis_gates=basis_gatesifbasis_gateselsebackend_basis_gatescoupling_map=coupling_mapifcoupling_mapelsebackend_cmapelifBackendV1isnotNoneandisinstance(self.backend,BackendV1):backend_basis_gates=self.backend.configuration().basis_gatesbackend_cmap=self.backend.configuration().coupling_mapifbackend_cmap:backend_cmap=CouplingMap(backend_cmap).reduce(self.physical_qubits)basis_gates=basis_gatesifbasis_gateselsebackend_basis_gatescoupling_map=coupling_mapifcoupling_mapelsebackend_cmapreturn{"basis_gates":tuple(sorted(basis_gates))ifbasis_gateselseNone,"coupling_tuple":tuple(sorted(coupling_map.get_edges()))ifcoupling_mapelseNone,"synthesis_method":self.experiment_options["clifford_synthesis_method"],}def_sequences_to_circuits(self,sequences:List[Sequence[SequenceElementType]])->List[QuantumCircuit]:"""Convert an RB sequence into circuit and append the inverse to the end. Returns: A list of RB circuits. """synthesis_opts=self._get_synthesis_options()# Circuit generationcircuits=[]fori,seqinenumerate(sequences):if(self.experiment_options.full_samplingori%len(self.experiment_options.lengths)==0):prev_elem,prev_seq=self.__identity_clifford(),[]circ=QuantumCircuit(self.num_qubits)foreleminseq:circ.append(self._to_instruction(elem,synthesis_opts),circ.qubits)circ._append(CircuitInstruction(Barrier(self.num_qubits),circ.qubits))# Compute inverse, compute only the difference from the previous shorter sequenceprev_elem=self.__compose_clifford_seq(prev_elem,seq[len(prev_seq):])prev_seq=seqinv=self.__adjoint_clifford(prev_elem)circ.append(self._to_instruction(inv,synthesis_opts),circ.qubits)circ.measure_all()# includes insertion of the barrier before measurementcircuits.append(circ)returncircuitsdef__sample_sequence(self,length:int,rng:Generator)->Sequence[SequenceElementType]:# Sample an RB sequence with the given length.# Return integer instead of Clifford object for 1 or 2 qubits case for speedifself.num_qubits==1:returnrng.integers(CliffordUtils.NUM_CLIFFORD_1_QUBIT,size=length)ifself.num_qubits==2:returnrng.integers(CliffordUtils.NUM_CLIFFORD_2_QUBIT,size=length)# Return Clifford object for 3 or more qubits casereturn[random_clifford(self.num_qubits,rng)for_inrange(length)]def_to_instruction(self,elem:SequenceElementType,synthesis_options:Dict[str,Optional[Any]],)->Instruction:"""Return the instruction of a Clifford element. The resulting instruction contains a circuit definition with ``basis_gates`` and it complies with ``coupling_tuple``, which is specified in ``synthesis_options``. Args: elem: a Clifford element to be converted synthesis_options: options for synthesizing the Clifford element Returns: Converted instruction """# Switching for speed upifisinstance(elem,Integral):ifself.num_qubits==1:return_clifford_1q_int_to_instruction(elem,basis_gates=synthesis_options["basis_gates"],synthesis_method=synthesis_options["synthesis_method"],)ifself.num_qubits==2:return_clifford_2q_int_to_instruction(elem,**synthesis_options)return_clifford_to_instruction(elem,**synthesis_options)def__identity_clifford(self)->SequenceElementType:ifself.num_qubits<=2:return0returnClifford(np.eye(2*self.num_qubits))def__compose_clifford_seq(self,base_elem:SequenceElementType,elements:Sequence[SequenceElementType])->SequenceElementType:ifself.num_qubits<=2:returnfunctools.reduce(compose_1qifself.num_qubits==1elsecompose_2q,elements,base_elem)# 3 or more qubitsres=base_elemforeleminelements:res=res.compose(elem)returnresdef__adjoint_clifford(self,op:SequenceElementType)->SequenceElementType:ifself.num_qubits==1:returninverse_1q(op)ifself.num_qubits==2:returninverse_2q(op)ifisinstance(op,QuantumCircuit):returnClifford.from_circuit(op).adjoint()returnop.adjoint()def_transpiled_circuits(self)->List[QuantumCircuit]:"""Return a list of experiment circuits, transpiled."""has_custom_transpile_option=(notset(vars(self.transpile_options)).issubset({"basis_gates","coupling_map","optimization_level"})orself.transpile_options.get("optimization_level",1)!=1)ifhas_custom_transpile_option:transpiled=super()._transpiled_circuits()else:transpiled=[_transpile_clifford_circuit(circ,physical_qubits=self.physical_qubits)forcircinself.circuits()]ifself.analysis.options.get("gate_error_ratio",None)isNone:# Gate errors are not computed, then counting ops is not necessary.returntranspiled# Compute average basis gate numbers per Clifford operation# This is probably main source of performance regression.# This should be integrated into transpile pass in future.qubit_indices={bit:indexforindex,bitinenumerate(transpiled[0].qubits)}forcircintranspiled:count_ops_result=defaultdict(int)# This is physical circuits, i.e. qargs is physical indexforcdataincirc.data:inst=cdata.operationqargs=cdata.qubitsifinst.namein("measure","reset","delay","barrier","snapshot"):continueqinds=[qubit_indices[q]forqinqargs]ifnotset(self.physical_qubits).issuperset(qinds):continue# Not aware of multi-qubit gate directionformatted_key=tuple(sorted(qinds)),inst.namecount_ops_result[formatted_key]+=1circ.metadata["count_ops"]=tuple(count_ops_result.items())returntranspileddef_metadata(self):metadata=super()._metadata()# Store measurement level and meas return if they have been# set for the experimentforrun_optin["meas_level","meas_return"]:ifhasattr(self.run_options,run_opt):metadata[run_opt]=getattr(self.run_options,run_opt)returnmetadata