Source code for qiskit_experiments.framework.experiment_data

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Experiment Data class
"""

from __future__ import annotations
import logging
import re
from typing import Dict, Optional, List, Union, Any, Callable, Tuple, TYPE_CHECKING
from datetime import datetime, timezone
from concurrent import futures
from functools import wraps
from collections import deque, defaultdict
from collections.abc import Iterable
import contextlib
import copy
import uuid
import time
import sys
import json
import traceback
import warnings
import numpy as np
import pandas as pd
from matplotlib import pyplot
from qiskit.result import Result
from qiskit.primitives import PrimitiveResult
from qiskit.providers.jobstatus import JobStatus, JOB_FINAL_STATES
from qiskit.exceptions import QiskitError
from qiskit.providers import Backend
from qiskit.utils.deprecation import deprecate_arg
from qiskit.primitives import BitArray, SamplerPubResult

from qiskit_ibm_experiment import (
    IBMExperimentService,
    ExperimentData as ExperimentDataclass,
    AnalysisResultData as AnalysisResultDataclass,
    ResultQuality,
)

from qiskit_experiments.framework.json import ExperimentEncoder, ExperimentDecoder
from qiskit_experiments.database_service.utils import (
    plot_to_svg_bytes,
    ThreadSafeOrderedDict,
    ThreadSafeList,
)
from qiskit_experiments.database_service.device_component import to_component, DeviceComponent
from qiskit_experiments.framework.analysis_result import AnalysisResult
from qiskit_experiments.framework.analysis_result_data import AnalysisResultData
from qiskit_experiments.framework.analysis_result_table import AnalysisResultTable
from qiskit_experiments.framework import BackendData
from qiskit_experiments.framework.containers import ArtifactData
from qiskit_experiments.framework import ExperimentStatus, AnalysisStatus, AnalysisCallback
from qiskit_experiments.framework.package_deps import qiskit_version
from qiskit_experiments.database_service.exceptions import (
    ExperimentDataError,
    ExperimentEntryNotFound,
    ExperimentDataSaveFailed,
)
from qiskit_experiments.database_service.utils import objs_to_zip, zip_to_objs

from .containers.figure_data import FigureData, FigureType
from .provider_interfaces import Job, Provider


if TYPE_CHECKING:
    # There is a cyclical dependency here, but the name needs to exist for
    # Sphinx on Python 3.9+ to link type hints correctly.  The gating on
    # `TYPE_CHECKING` means that the import will never be resolved by an actual
    # interpreter, only static analysis.
    from . import BaseExperiment

LOG = logging.getLogger(__name__)


def do_auto_save(func: Callable):
    """Decorate the input function to auto save data."""

    @wraps(func)
    def _wrapped(self, *args, **kwargs):
        return_val = func(self, *args, **kwargs)
        if self.auto_save:
            self.save_metadata()
        return return_val

    return _wrapped


def parse_utc_datetime(dt_str: str) -> datetime:
    """Parses UTC datetime from a string"""
    if dt_str is None:
        return None

    db_datetime_format = "%Y-%m-%dT%H:%M:%S.%fZ"
    dt_utc = datetime.strptime(dt_str, db_datetime_format)
    dt_utc = dt_utc.replace(tzinfo=timezone.utc)
    return dt_utc


[docs] class ExperimentData: """Experiment data container class. .. note:: Saving experiment data to the cloud database is currently a limited access feature. You can check whether you have access by logging into the IBM Quantum interface and seeing if you can see the `database <https://quantum.ibm.com/experiments>`__. This class handles the following: 1. Storing the data related to an experiment: raw data, metadata, analysis results, and figures 2. Managing jobs and adding data from jobs automatically 3. Saving and loading data from the database service The field ``db_data`` is a dataclass (``ExperimentDataclass``) containing all the data that can be stored in the database and loaded from it, and as such is subject to strict conventions. Other data fields can be added and used freely, but they won't be saved to the database. """ _metadata_version = 1 _job_executor = futures.ThreadPoolExecutor() _json_encoder = ExperimentEncoder _json_decoder = ExperimentDecoder _metadata_filename = "metadata.json" _max_workers_cap = 10 def __init__( self, experiment: Optional["BaseExperiment"] = None, backend: Optional[Backend] = None, service: Optional[IBMExperimentService] = None, provider: Optional[Provider] = None, parent_id: Optional[str] = None, job_ids: Optional[List[str]] = None, child_data: Optional[List[ExperimentData]] = None, verbose: Optional[bool] = True, db_data: Optional[ExperimentDataclass] = None, start_datetime: Optional[datetime] = None, **kwargs, ): """Initialize experiment data. Args: experiment: Experiment object that generated the data. backend: Backend the experiment runs on. This overrides the backend in the experiment object. service: The service that stores the experiment results to the database provider: The provider used for the experiments (can be used to automatically obtain the service) parent_id: ID of the parent experiment data in the setting of a composite experiment job_ids: IDs of jobs submitted for the experiment. child_data: List of child experiment data. verbose: Whether to print messages. db_data: A prepared ExperimentDataclass of the experiment info. This overrides other db parameters. start_datetime: The time when the experiment started running. If none, defaults to the current time. Additional info: In order to save the experiment data to the cloud service, the class needs access to the experiment service provider. It can be obtained via three different methods, given here by priority: 1. Passing it directly via the ``service`` parameter. 2. Implicitly obtaining it from the ``provider`` parameter. 3. Implicitly obtaining it from the ``backend`` parameter, using that backend's provider. """ if experiment is not None: backend = backend or experiment.backend experiment_type = experiment.experiment_type else: # Don't use None since the resultDB won't accept that experiment_type = "" if job_ids is None: job_ids = [] self._experiment = experiment # data stored in the database metadata = {} if experiment is not None: metadata = copy.deepcopy(experiment._metadata()) source = metadata.pop( "_source", { "class": f"{self.__class__.__module__}.{self.__class__.__name__}", "metadata_version": self.__class__._metadata_version, "qiskit_version": qiskit_version(), }, ) metadata["_source"] = source experiment_id = kwargs.get("experiment_id", str(uuid.uuid4())) if db_data is None: self._db_data = ExperimentDataclass( experiment_id=experiment_id, experiment_type=experiment_type, parent_id=parent_id, job_ids=job_ids, metadata=metadata, ) else: self._db_data = db_data if self.start_datetime is None: if start_datetime is None: start_datetime = datetime.now() self.start_datetime = start_datetime for key, value in kwargs.items(): if hasattr(self._db_data, key): setattr(self._db_data, key, value) else: LOG.warning("Key '%s' not stored in the database", key) # general data related self._backend = None if backend is not None: self._set_backend(backend, recursive=False) self._provider = provider if provider is None and backend is not None: # BackendV2 has a provider attribute but BackendV3 probably will not self._provider = getattr(backend, "provider", None) if self.provider is None and hasattr(backend, "service"): # qiskit_ibm_runtime.IBMBackend stores its Provider-like object in # the "service" attribute self._provider = backend.service # Experiment service like qiskit_ibm_experiment.IBMExperimentService, # not to be confused with qiskit_ibm_runtime.QiskitRuntimeService self._service = service self._auto_save = False self._created_in_db = False self._extra_data = kwargs self.verbose = verbose # job handling related self._jobs = ThreadSafeOrderedDict(job_ids) self._job_futures = ThreadSafeOrderedDict() self._running_time = None self._analysis_callbacks = ThreadSafeOrderedDict() self._analysis_futures = ThreadSafeOrderedDict() # Set 2 workers for analysis executor so there can be 1 actively running # future and one waiting "running" future. This is to allow the second # future to be cancelled without waiting for the actively running future # to finish first. self._analysis_executor = futures.ThreadPoolExecutor(max_workers=2) self._monitor_executor = futures.ThreadPoolExecutor() # data storage self._result_data = ThreadSafeList() self._figures = ThreadSafeOrderedDict(self._db_data.figure_names) self._analysis_results = AnalysisResultTable() self._artifacts = ThreadSafeOrderedDict() self._deleted_figures = deque() self._deleted_analysis_results = deque() self._deleted_artifacts = set() # for holding unique artifact names to be deleted # Child related # Add component data and set parent ID to current container self._child_data = ThreadSafeOrderedDict() if child_data is not None: self._set_child_data(child_data) # Getters/setters for experiment metadata @property def experiment(self): """Return the experiment for this data. Returns: BaseExperiment: the experiment object. """ return self._experiment @property def completion_times(self) -> Dict[str, datetime]: """Returns the completion times of the jobs.""" job_times = {} for job_id, job in self._jobs.items(): if job is not None: if hasattr(job, "time_per_step") and "COMPLETED" in job.time_per_step(): job_times[job_id] = job.time_per_step().get("COMPLETED") elif ( execution := getattr(job.result(), "metadata", {}).get("execution") ) and "execution_spans" in execution: job_times[job_id] = execution["execution_spans"].stop elif (client := getattr(job, "_api_client", None)) and hasattr( client, "job_metadata" ): metadata = client.job_metadata(job.job_id()) finished = metadata.get("timestamps", {}).get("finished", {}) if finished: job_times[job_id] = datetime.fromisoformat(finished) if job_id not in job_times: warnings.warn( "Could not determine job completion time. Using current timestamp.", UserWarning, ) job_times[job_id] = datetime.now() return job_times @property def tags(self) -> List[str]: """Return tags assigned to this experiment data. Returns: A list of tags assigned to this experiment data. """ return self._db_data.tags @tags.setter def tags(self, new_tags: List[str]) -> None: """Set tags for this experiment.""" if not isinstance(new_tags, list): raise ExperimentDataError(f"The `tags` field of {type(self).__name__} must be a list.") self._db_data.tags = np.unique(new_tags).tolist() if self.auto_save: self.save_metadata() @property def metadata(self) -> Dict: """Return experiment metadata. Returns: Experiment metadata. """ return self._db_data.metadata @property def creation_datetime(self) -> datetime: """Return the creation datetime of this experiment data. Returns: The timestamp when this experiment data was saved to the cloud service in the local timezone. """ return self._db_data.creation_datetime @property def start_datetime(self) -> datetime: """Return the start datetime of this experiment data. Returns: The timestamp when this experiment began running in the local timezone. """ return self._db_data.start_datetime @start_datetime.setter def start_datetime(self, new_start_datetime: datetime) -> None: self._db_data.start_datetime = new_start_datetime @property def updated_datetime(self) -> datetime: """Return the update datetime of this experiment data. Returns: The timestamp when this experiment data was last updated in the service in the local timezone. """ return self._db_data.updated_datetime @property def running_time(self) -> datetime | None: """Return the running time of this experiment data. The running time is the time the latest successful job started running on the remote quantum machine. This can change as more jobs finish. .. note:: In practice, this property is not currently set automatically by Qiskit Experiments. """ return self._running_time @property def end_datetime(self) -> datetime: """Return the end datetime of this experiment data. The end datetime is the time the latest job data was added without errors; this can change as more jobs finish. Returns: The timestamp when the last job of this experiment finished in the local timezone. """ return self._db_data.end_datetime @end_datetime.setter def end_datetime(self, new_end_datetime: datetime) -> None: self._db_data.end_datetime = new_end_datetime @property def hub(self) -> str: """Return the hub of this experiment data. Returns: The hub of this experiment data. """ return self._db_data.hub @property def group(self) -> str: """Return the group of this experiment data. Returns: The group of this experiment data. """ return self._db_data.group @property def project(self) -> str: """Return the project of this experiment data. Returns: The project of this experiment data. """ return self._db_data.project @property def experiment_id(self) -> str: """Return experiment ID Returns: Experiment ID. """ return self._db_data.experiment_id @property def experiment_type(self) -> str: """Return experiment type Returns: Experiment type. """ return self._db_data.experiment_type @experiment_type.setter def experiment_type(self, new_type: str) -> None: """Sets the parent id""" self._db_data.experiment_type = new_type @property def parent_id(self) -> str: """Return parent experiment ID Returns: Parent ID. """ return self._db_data.parent_id @parent_id.setter def parent_id(self, new_id: str) -> None: """Sets the parent id""" self._db_data.parent_id = new_id @property def job_ids(self) -> List[str]: """Return experiment job IDs. Returns: IDs of jobs submitted for this experiment. """ return self._db_data.job_ids @property def figure_names(self) -> List[str]: """Return names of the figures associated with this experiment. Returns: Names of figures associated with this experiment. """ return self._db_data.figure_names @property def share_level(self) -> str: """Return the share level for this experiment Returns: Experiment share level. """ return self._db_data.share_level @share_level.setter def share_level(self, new_level: str) -> None: """Set the experiment share level, to this experiment itself and its descendants. Args: new_level: New experiment share level. Valid share levels are provider- specified. For example, IBM Quantum experiment service allows "public", "hub", "group", "project", and "private". """ self._db_data.share_level = new_level for data in self._child_data.values(): original_auto_save = data.auto_save data.auto_save = False data.share_level = new_level data.auto_save = original_auto_save if self.auto_save: self.save_metadata() @property def notes(self) -> str: """Return experiment notes. Returns: Experiment notes. """ return self._db_data.notes @notes.setter def notes(self, new_notes: str) -> None: """Update experiment notes. Args: new_notes: New experiment notes. """ self._db_data.notes = new_notes if self.auto_save: self.save_metadata() @property def backend_name(self) -> str: """Return the backend's name""" return self._db_data.backend @property def backend(self) -> Backend: """Return backend. Returns: Backend. """ return self._backend @backend.setter def backend(self, new_backend: Backend) -> None: """Update backend. Args: new_backend: New backend. """ self._set_backend(new_backend) if self.auto_save: self.save_metadata() def _set_backend(self, new_backend: Backend, recursive: bool = True) -> None: """Set backend. Args: new_backend: New backend. recursive: should set the backend for children as well """ # defined independently from the setter to enable setting without autosave self._backend = new_backend self._backend_data = BackendData(new_backend) self._db_data.backend = self._backend_data.name if self._db_data.backend is None: self._db_data.backend = str(new_backend) if hasattr(self._backend, "_instance") and self._backend._instance: self.hgp = self._backend._instance if recursive: for data in self.child_data(): data._set_backend(new_backend) @property def hgp(self) -> str: """Returns Hub/Group/Project data as a formatted string""" return f"{self.hub}/{self.group}/{self.project}" @hgp.setter def hgp(self, new_hgp: str) -> None: """Sets the Hub/Group/Project data from a formatted string""" if re.match(r"[^/]*/[^/]*/[^/]*$", new_hgp) is None: raise QiskitError("hgp can be only given in a <hub>/<group>/<project> format") self._db_data.hub, self._db_data.group, self._db_data.project = new_hgp.split("/") def _clear_results(self): """Delete all currently stored analysis results and figures""" # Schedule existing analysis results for deletion next save call self._deleted_analysis_results.extend(list(self._analysis_results.result_ids)) self._analysis_results.clear() # Schedule existing figures for deletion next save call # TODO: Fully delete artifacts from the service # Current implementation uploads empty files instead for artifact in self._artifacts.values(): self._deleted_artifacts.add(artifact.name) for key in self._figures.keys(): self._deleted_figures.append(key) self._figures = ThreadSafeOrderedDict() self._artifacts = ThreadSafeOrderedDict() self._db_data.figure_names.clear() @property def service(self) -> Optional[IBMExperimentService]: """Return the database service. Returns: Service that can be used to access this experiment in a database. """ return self._service @service.setter def service(self, service: IBMExperimentService) -> None: """Set the service to be used for storing experiment data Args: service: Service to be used. Raises: ExperimentDataError: If an experiment service is already being used. """ self._set_service(service) def _infer_service(self, warn: bool): """Try to configure service if it has not been configured This method should be called before any method that needs to work with the experiment service. Args: warn: Warn if the service could not be set up from the backend or provider attributes. Returns: True if a service instance has been set up """ if self.service is None: self.service = self.get_service_from_backend(self.backend) if self.service is None: self.service = self.get_service_from_provider(self.provider) if warn and self.service is None: LOG.warning("Experiment service has not been configured. Can not save!") return self.service is not None def _set_service(self, service: IBMExperimentService) -> None: """Set the service to be used for storing experiment data, to this experiment itself and its descendants. Args: service: Service to be used. Raises: ExperimentDataError: If an experiment service is already being used and `replace==False`. """ if self._service is not None: raise ExperimentDataError("An experiment service is already being used.") self._service = service with contextlib.suppress(Exception): self.auto_save = self.service.options.get("auto_save", False) for data in self.child_data(): data._set_service(service)
[docs] @staticmethod def get_service_from_backend(backend) -> IBMExperimentService | None: """Initializes the service from the backend data""" # backend.provider is not checked since currently the only viable way # to set up the experiment service is using the credentials from # QiskitRuntimeService on a qiskit_ibm_runtime.IBMBackend. provider = getattr(backend, "service", None) return ExperimentData.get_service_from_provider(provider)
[docs] @staticmethod def get_service_from_provider(provider) -> IBMExperimentService | None: """Initializes the service from the provider data""" if not hasattr(provider, "active_account"): return None account = provider.active_account() url = account.get("url") token = account.get("token") try: if url is not None and token is not None: return IBMExperimentService(token=token, url=url) except Exception: # pylint: disable=broad-except LOG.warning("Failed to connect to experiment service", exc_info=True) return None
@property def provider(self) -> Optional[Provider]: """Return the backend provider. Returns: Provider that is used to obtain backends and job data. """ return self._provider @provider.setter def provider(self, provider: Provider) -> None: """Set the provider to be used for obtaining job data Args: provider: Provider to be used. """ self._provider = provider @property def auto_save(self) -> bool: """Return current auto-save option. Returns: Whether changes will be automatically saved. """ return self._auto_save @auto_save.setter def auto_save(self, save_val: bool) -> None: """Set auto save preference. Args: save_val: Whether to do auto-save. """ # children will be saved once we set auto_save for them if save_val is True: self.save(save_children=False) self._auto_save = save_val for data in self.child_data(): data.auto_save = save_val @property def source(self) -> Dict: """Return the class name and version.""" return self._db_data.metadata["_source"] # Data addition and deletion
[docs] def add_data( self, data: Union[Result, PrimitiveResult, List[Result | PrimitiveResult], Dict, List[Dict]], ) -> None: """Add experiment data. Args: data: Experiment data to add. Several types are accepted for convenience: * Result: Add data from this ``Result`` object. * List[Result]: Add data from the ``Result`` objects. * Dict: Add this data. * List[Dict]: Add this list of data. Raises: TypeError: If the input data type is invalid. """ if any(not future.done() for future in self._analysis_futures.values()): LOG.warning( "Not all analysis has finished running. Adding new data may " "create unexpected analysis results." ) if not isinstance(data, list): data = [data] # Directly add non-job data with self._result_data.lock: for datum in data: if isinstance(datum, dict): self._result_data.append(datum) elif isinstance(datum, (Result, PrimitiveResult)): self._add_result_data(datum) else: raise TypeError(f"Invalid data type {type(datum)}.")
[docs] def add_jobs( self, jobs: Union[Job, List[Job]], timeout: Optional[float] = None, ) -> None: """Add experiment data. Args: jobs: The Job or list of Jobs to add result data from. timeout: Optional, time in seconds to wait for all jobs to finish before cancelling them. Raises: TypeError: If the input data type is invalid. .. note:: If a timeout is specified the :meth:`cancel_jobs` method will be called after timing out to attempt to cancel any unfinished jobs. If you want to wait for jobs without cancelling, use the timeout kwarg of :meth:`block_for_results` instead. """ if any(not future.done() for future in self._analysis_futures.values()): LOG.warning( "Not all analysis has finished running. Adding new jobs may " "create unexpected analysis results." ) if not isinstance(jobs, Iterable): jobs = [jobs] # Add futures for extracting finished job data timeout_ids = [] for job in jobs: if hasattr(job, "backend"): if self.backend is not None: backend_name = BackendData(self.backend).name job_backend_name = BackendData(job.backend()).name if self.backend and backend_name != job_backend_name: LOG.warning( "Adding a job from a backend (%s) that is different " "than the current backend (%s). " "The new backend will be used, but " "service is not changed if one already exists.", job.backend(), self.backend, ) self.backend = job.backend() jid = job.job_id() if jid in self._jobs: LOG.warning( "Skipping duplicate job, a job with this ID already exists [Job ID: %s]", jid ) else: self.job_ids.append(jid) self._jobs[jid] = job if jid in self._job_futures: LOG.warning("Job future has already been submitted [Job ID: %s]", jid) else: self._add_job_future(job) if timeout is not None: timeout_ids.append(jid) # Add future for cancelling jobs that timeout if timeout_ids: self._job_executor.submit(self._timeout_running_jobs, timeout_ids, timeout) if self.auto_save: self.save_metadata()
def _timeout_running_jobs(self, job_ids, timeout): """Function for cancelling jobs after timeout length. This function should be submitted to an executor to run as a future. Args: job_ids: the IDs of jobs to wait for. timeout: The total time to wait for all jobs before cancelling. """ futs = [self._job_futures[jid] for jid in job_ids] waited = futures.wait(futs, timeout=timeout) # Try to cancel timed-out jobs if waited.not_done: LOG.debug("Cancelling running jobs that exceeded add_jobs timeout.") done_ids = {fut.result()[0] for fut in waited.done} notdone_ids = [jid for jid in job_ids if jid not in done_ids] self.cancel_jobs(notdone_ids) def _add_job_future(self, job): """Submit new _add_job_data job to executor""" jid = job.job_id() if jid in self._job_futures: LOG.warning("Job future has already been submitted [Job ID: %s]", jid) else: self._job_futures[jid] = self._job_executor.submit(self._add_job_data, job) def _add_job_data( self, job: Job, ) -> Tuple[str, bool]: """Wait for a job to finish and add job result data. Args: job: the Job to wait for and add data from. Returns: A tuple (str, bool) of the job id and bool of if the job data was added. Raises: Exception: If an error occurred when adding job data. """ jid = job.job_id() try: job_result = job.result() self._add_result_data(job_result, jid) LOG.debug("Job data added [Job ID: %s]", jid) # sets the endtime to be the time the last successful job was added self.end_datetime = datetime.now() return jid, True except Exception as ex: # pylint: disable=broad-except # Handle cancelled jobs status = job.status() if status == JobStatus.CANCELLED: LOG.warning("Job was cancelled before completion [Job ID: %s]", jid) return jid, False if status == JobStatus.ERROR: LOG.error( "Job data not added for errored job [Job ID: %s]\nError message: %s", jid, job.error_message() if hasattr(job, "error_message") else "n/a", ) return jid, False LOG.warning("Adding data from job failed [Job ID: %s]", job.job_id()) raise ex
[docs] def add_analysis_callback(self, callback: Callable, **kwargs: Any): """Add analysis callback for running after experiment data jobs are finished. This method adds the `callback` function to a queue to be run asynchronously after completion of any running jobs, or immediately if no running jobs. If this method is called multiple times the callback functions will be executed in the order they were added. Args: callback: Callback function invoked when job finishes successfully. The callback function will be called as ``callback(expdata, **kwargs)`` where `expdata` is this ``DbExperimentData`` object, and `kwargs` are any additional keyword arguments passed to this method. **kwargs: Keyword arguments to be passed to the callback function. """ with self._job_futures.lock and self._analysis_futures.lock: # Create callback dataclass cid = uuid.uuid4().hex self._analysis_callbacks[cid] = AnalysisCallback( name=callback.__name__, callback_id=cid, ) # Futures to wait for futs = self._job_futures.values() + self._analysis_futures.values() wait_future = self._monitor_executor.submit( self._wait_for_futures, futs, name="jobs and analysis" ) # Create a future to monitor event for calls to cancel_analysis def _monitor_cancel(): self._analysis_callbacks[cid].event.wait() return False cancel_future = self._monitor_executor.submit(_monitor_cancel) # Add run analysis future self._analysis_futures[cid] = self._analysis_executor.submit( self._run_analysis_callback, cid, wait_future, cancel_future, callback, **kwargs )
def _run_analysis_callback( self, callback_id: str, wait_future: futures.Future, cancel_future: futures.Future, callback: Callable, **kwargs, ): """Run an analysis callback after specified futures have finished.""" if callback_id not in self._analysis_callbacks: raise ValueError(f"No analysis callback with id {callback_id}") # Monitor jobs and cancellation event to see if callback should be run # or cancelled # Future which returns if either all jobs finish, or cancel event is set waited = futures.wait([wait_future, cancel_future], return_when="FIRST_COMPLETED") cancel = not all(fut.result() for fut in waited.done) # Ensure monitor event is set so monitor future can terminate self._analysis_callbacks[callback_id].event.set() # If not ready cancel the callback before running if cancel: self._analysis_callbacks[callback_id].status = AnalysisStatus.CANCELLED LOG.info( "Cancelled analysis callback [Experiment ID: %s][Analysis Callback ID: %s]", self.experiment_id, callback_id, ) return callback_id, False # Run callback function self._analysis_callbacks[callback_id].status = AnalysisStatus.RUNNING try: LOG.debug( "Running analysis callback '%s' [Experiment ID: %s][Analysis Callback ID: %s]", self._analysis_callbacks[callback_id].name, self.experiment_id, callback_id, ) callback(self, **kwargs) self._analysis_callbacks[callback_id].status = AnalysisStatus.DONE LOG.debug( "Analysis callback finished [Experiment ID: %s][Analysis Callback ID: %s]", self.experiment_id, callback_id, ) return callback_id, True except Exception as ex: # pylint: disable=broad-except self._analysis_callbacks[callback_id].status = AnalysisStatus.ERROR tb_text = "".join(traceback.format_exception(type(ex), ex, ex.__traceback__)) error_msg = ( f"Analysis callback failed [Experiment ID: {self.experiment_id}]" f"[Analysis Callback ID: {callback_id}]:\n{tb_text}" ) self._analysis_callbacks[callback_id].error_msg = error_msg LOG.warning(error_msg) return callback_id, False def _add_result_data( self, result: Result | PrimitiveResult, job_id: Optional[str] = None, ) -> None: """Add data from a Result object Args: result: Result object containing data to be added. job_id: The id of the job the result came from. If `None`, the job id in `result` is used. """ if hasattr(result, "results"): # backend run results if job_id is None: job_id = result.job_id if job_id not in self._jobs: self._jobs[job_id] = None self.job_ids.append(job_id) with self._result_data.lock: # Lock data while adding all result data for i, _ in enumerate(result.results): data = result.data(i) data["job_id"] = job_id if "counts" in data: # Format to Counts object rather than hex dict data["counts"] = result.get_counts(i) expr_result = result.results[i] if hasattr(expr_result, "header") and hasattr(expr_result.header, "metadata"): data["metadata"] = expr_result.header.metadata data["shots"] = expr_result.shots data["meas_level"] = expr_result.meas_level if hasattr(expr_result, "meas_return"): data["meas_return"] = expr_result.meas_return self._result_data.append(data) else: # sampler results if job_id is None: raise QiskitError("job_id must be provided, not available in the sampler result") if job_id not in self._jobs: self._jobs[job_id] = None self.job_ids.append(job_id) with self._result_data.lock: # Lock data while adding all result data # Sampler results are a list for i, _ in enumerate(result): data = {} # convert to a Sampler Pub Result (can remove this later when the bug is fixed) testres = SamplerPubResult(result[i].data, result[i].metadata) data["job_id"] = job_id if testres.data: joined_data = testres.join_data() outer_shape = testres.data.shape if outer_shape: raise QiskitError( f"Outer PUB dimensions {outer_shape} found in result. " "Only unparameterized PUBs are currently supported by " "qiskit-experiments." ) else: joined_data = None if joined_data is None: # No data, usually this only happens in tests pass elif isinstance(joined_data, BitArray): # bit results so has counts data["meas_level"] = 2 # The sampler result always contains bitstrings. At # this point, we have lost track of whether the job # requested memory/meas_return=single. Here we just # hope that nothing breaks if we always return single # shot results since the counts dict is also returned # any way. data["meas_return"] = "single" # join the data data["counts"] = testres.join_data(testres.data.keys()).get_counts() data["memory"] = testres.join_data(testres.data.keys()).get_bitstrings() # number of shots data["shots"] = joined_data.num_shots elif isinstance(joined_data, np.ndarray): data["meas_level"] = 1 if joined_data.ndim == 1: data["meas_return"] = "avg" # TODO: we either need to track shots in the # circuit metadata and pull it out here or get # upstream to report the number of shots in the # sampler result for level 1 avg data. data["shots"] = 1 data["memory"] = np.zeros((len(joined_data), 2), dtype=float) data["memory"][:, 0] = np.real(joined_data) data["memory"][:, 1] = np.imag(joined_data) else: data["meas_return"] = "single" data["shots"] = joined_data.shape[0] data["memory"] = np.zeros((*joined_data.shape, 2), dtype=float) data["memory"][:, :, 0] = np.real(joined_data) data["memory"][:, :, 1] = np.imag(joined_data) else: raise QiskitError(f"Unexpected result format: {type(joined_data)}") # Some Sampler implementations remove the circuit metadata # which some experiment Analysis classes need. Here we try # to put it back from the circuits themselves. if "circuit_metadata" in testres.metadata: data["metadata"] = testres.metadata["circuit_metadata"] elif self._jobs[job_id] is not None: corresponding_pub = self._jobs[job_id].inputs["pubs"][i] circuit = corresponding_pub[0] data["metadata"] = circuit.metadata self._result_data.append(data) def _retrieve_data(self): """Retrieve job data if missing experiment data.""" # Get job results if missing in experiment data. if self.provider is None: # 'self._result_data' could be locked, so I check a copy of it. if not self._result_data.copy(): # Adding warning so the user will have indication why the analysis may fail. LOG.warning( "Provider for ExperimentData object doesn't exist, resulting in a failed attempt to" " retrieve data from the server; no stored result data exists" ) return retrieved_jobs = {} jobs_to_retrieve = [] # the list of all jobs to retrieve from the server # first find which jobs are listed in the `job_ids` field of the experiment data if self.job_ids is not None: for jid in self.job_ids: if jid not in self._jobs or self._jobs[jid] is None: jobs_to_retrieve.append(jid) for jid in jobs_to_retrieve: LOG.debug("Retrieving job [Job ID: %s]", jid) try: # qiskit-ibm-runtime syntax job = self.provider.job(jid) retrieved_jobs[jid] = job except Exception: # pylint: disable=broad-except LOG.warning( "Unable to retrieve data from job [Job ID: %s]: %s", jid, traceback.format_exc() ) # Add retrieved job objects to stored jobs and extract data for jid, job in retrieved_jobs.items(): self._jobs[jid] = job if job.status() in JOB_FINAL_STATES: # Add job results synchronously self._add_job_data(job) else: # Add job results asynchronously self._add_job_future(job)
[docs] def data( self, index: Optional[Union[int, slice, str]] = None, ) -> Union[Dict, List[Dict]]: """Return the experiment data at the specified index. Args: index: Index of the data to be returned. Several types are accepted for convenience: * None: Return all experiment data. * int: Specific index of the data. * slice: A list slice of data indexes. * str: ID of the job that produced the data. Returns: Experiment data. Raises: TypeError: If the input `index` has an invalid type. """ self._retrieve_data() if index is None: return self._result_data.copy() if isinstance(index, (int, slice)): return self._result_data[index] if isinstance(index, str): return [data for data in self._result_data if data.get("job_id") == index] raise TypeError(f"Invalid index type {type(index)}.")
[docs] @do_auto_save def add_figures( self, figures: Union[FigureType, List[FigureType]], figure_names: Optional[Union[str, List[str]]] = None, overwrite: bool = False, save_figure: Optional[bool] = None, ) -> Union[str, List[str]]: """Add the experiment figure. Args: figures: Paths of the figure files or figure data. figure_names: Names of the figures. If ``None``, use the figure file names, if given, or a generated name of the format ``experiment_type``, figure index, first 5 elements of ``device_components``, and first 8 digits of the experiment ID connected by underscores, such as ``T1_Q0_0123abcd.svg``. If `figures` is a list, then `figure_names` must also be a list of the same length or ``None``. overwrite: Whether to overwrite the figure if one already exists with the same name. By default, overwrite is ``False`` and the figure will be renamed with an incrementing numerical suffix. For example, trying to save ``figure.svg`` when ``figure.svg`` already exists will save it as ``figure-1.svg``, and trying to save ``figure-1.svg`` when ``figure-1.svg`` already exists will save it as ``figure-2.svg``. save_figure: Whether to save the figure in the database. If ``None``, the ``auto-save`` attribute is used. Returns: Figure names in SVG format. Raises: ValueError: If an input parameter has an invalid value. """ if figure_names is not None and not isinstance(figure_names, list): figure_names = [figure_names] if not isinstance(figures, list): figures = [figures] if figure_names is not None and len(figures) != len(figure_names): raise ValueError( "The parameter figure_names must be None or a list of " "the same size as the parameter figures." ) added_figs = [] for idx, figure in enumerate(figures): if figure_names is None: if isinstance(figure, str): # figure is a filename, so we use it as the name fig_name = figure elif not isinstance(figure, FigureData): # Generate a name in the form StandardRB_Q0_Q1_Q2_b4f1d8ad-1.svg fig_name = ( f"{self.experiment_type}_" f'{"_".join(str(i) for i in self.metadata.get("device_components", [])[:5])}_' f"{self.experiment_id[:8]}.svg" ) else: # Keep the existing figure name if there is one fig_name = figure.name else: fig_name = figure_names[idx] if not fig_name.endswith(".svg"): LOG.info("File name %s does not have an SVG extension. A '.svg' is added.") fig_name += ".svg" existing_figure = fig_name in self._figures if existing_figure and not overwrite: # Remove any existing suffixes then generate new figure name # StandardRB_Q0_Q1_Q2_b4f1d8ad.svg becomes StandardRB_Q0_Q1_Q2_b4f1d8ad fig_name_chunked = fig_name.rsplit("-", 1) if len(fig_name_chunked) != 1: # Figure name already has a suffix # This extracts StandardRB_Q0_Q1_Q2_b4f1d8ad as the prefix from # StandardRB_Q0_Q1_Q2_b4f1d8ad-1.svg fig_name_prefix = fig_name_chunked[0] try: fig_name_suffix = int(fig_name_chunked[1].rsplit(".", 1)[0]) except ValueError: # the suffix is not an int, add our own suffix # my-custom-figure-name will be the prefix of my-custom-figure-name.svg fig_name_prefix = fig_name.rsplit(".", 1)[0] fig_name_suffix = 0 else: # StandardRB_Q0_Q1_Q2_b4f1d8ad.svg has no hyphens so # StandardRB_Q0_Q1_Q2_b4f1d8ad would be its prefix fig_name_prefix = fig_name.rsplit(".", 1)[0] fig_name_suffix = 0 fig_name = f"{fig_name_prefix}-{fig_name_suffix + 1}.svg" while fig_name in self._figures: # Increment suffix until the name isn't taken # If StandardRB_Q0_Q1_Q2_b4f1d8ad-1.svg already exists, # StandardRB_Q0_Q1_Q2_b4f1d8ad-2.svg will be the name of this figure fig_name_suffix += 1 fig_name = f"{fig_name_prefix}-{fig_name_suffix + 1}.svg" # figure_data = None if isinstance(figure, str): with open(figure, "rb") as file: figure = file.read() # check whether the figure is already wrapped, meaning it came from a sub-experiment if isinstance(figure, FigureData): figure_data = figure.copy(new_name=fig_name) figure = figure_data.figure else: figure_metadata = { "qubits": self.metadata.get("physical_qubits"), "device_components": self.metadata.get("device_components"), "experiment_type": self.experiment_type, } figure_data = FigureData(figure=figure, name=fig_name, metadata=figure_metadata) self._figures[fig_name] = figure_data self._db_data.figure_names.append(fig_name) save = save_figure if save_figure is not None else self.auto_save if save and self._infer_service(warn=True): if isinstance(figure, pyplot.Figure): figure = plot_to_svg_bytes(figure) self.service.create_or_update_figure( experiment_id=self.experiment_id, figure=figure, figure_name=fig_name, create=not existing_figure, ) added_figs.append(fig_name) return added_figs if len(added_figs) != 1 else added_figs[0]
[docs] @do_auto_save def delete_figure( self, figure_key: Union[str, int], ) -> str: """Add the experiment figure. Args: figure_key: Name or index of the figure. Returns: Figure name. Raises: ExperimentEntryNotFound: If the figure is not found. """ figure_key = self._find_figure_key(figure_key) del self._figures[figure_key] self._deleted_figures.append(figure_key) if self.auto_save and self._infer_service(warn=True): with service_exception_to_warning(): self.service.delete_figure(experiment_id=self.experiment_id, figure_name=figure_key) self._deleted_figures.remove(figure_key) return figure_key
def _find_figure_key( self, figure_key: int | str, ) -> str: """A helper method to find figure key.""" if isinstance(figure_key, int): if figure_key < 0 or figure_key >= len(self._figures): raise ExperimentEntryNotFound(f"Figure index {figure_key} out of range.") return self._figures.keys()[figure_key] # All figures must have '.svg' in their names when added, as the extension is added to the key # name in the `add_figures()` method of this class. if isinstance(figure_key, str): if not figure_key.endswith(".svg"): figure_key += ".svg" if figure_key not in self._figures: raise ExperimentEntryNotFound(f"Figure key {figure_key} not found.") return figure_key
[docs] def figure( self, figure_key: Union[str, int], file_name: Optional[str] = None, ) -> Union[int, FigureData]: """Retrieve the specified experiment figure. Args: figure_key: Name or index of the figure. file_name: Name of the local file to save the figure to. If ``None``, the content of the figure is returned instead. Returns: The size of the figure if `file_name` is specified. Otherwise the content of the figure as a `FigureData` object. Raises: ExperimentEntryNotFound: If the figure cannot be found. """ figure_key = self._find_figure_key(figure_key) figure_data = self._figures.get(figure_key, None) if figure_data is None and self._infer_service(warn=False): figure = self.service.figure(experiment_id=self.experiment_id, figure_name=figure_key) figure_data = FigureData(figure=figure, name=figure_key) self._figures[figure_key] = figure_data if figure_data is None: raise ExperimentEntryNotFound(f"Figure {figure_key} not found.") if file_name: with open(file_name, "wb") as output: num_bytes = output.write(figure_data.figure) return num_bytes return figure_data
[docs] @deprecate_arg( name="results", since="0.6", additional_msg="Use keyword arguments rather than creating an AnalysisResult object.", package_name="qiskit-experiments", pending=True, ) @do_auto_save def add_analysis_results( self, results: Optional[Union[AnalysisResult, List[AnalysisResult]]] = None, *, name: Optional[str] = None, value: Optional[Any] = None, quality: Optional[str] = None, components: Optional[List[DeviceComponent]] = None, experiment: Optional[str] = None, experiment_id: Optional[str] = None, result_id: Optional[str] = None, tags: Optional[List[str]] = None, backend: Optional[str] = None, run_time: Optional[datetime] = None, created_time: Optional[datetime] = None, **extra_values, ) -> None: """Save the analysis result. Args: results: Analysis results to be saved. name: Name of the result entry. value: Analyzed quantity. quality: Quality of the data. components: Associated device components. experiment: String identifier of the associated experiment. experiment_id: ID of the associated experiment. result_id: ID of this analysis entry. If not set a random UUID is generated. tags: List of arbitrary tags. backend: Name of associated backend. run_time: The date time when the experiment started to run on the device. created_time: The date time when this analysis is performed. extra_values: Arbitrary keyword arguments for supplementary information. New dataframe columns are created in the analysis result table with added keys. """ if results is not None: # TODO deprecate this path if not isinstance(results, list): results = [results] for result in results: extra_values = result.extra.copy() if result.chisq is not None: # Move chisq to extra. # This is not global outcome, e.g. QPT doesn't provide chisq. extra_values["chisq"] = result.chisq experiment = extra_values.pop("experiment", self.experiment_type) backend = extra_values.pop("backend", self.backend_name) run_time = extra_values.pop("run_time", self.running_time) created_time = extra_values.pop("created_time", None) self._analysis_results.add_data( name=result.name, value=result.value, quality=result.quality, components=result.device_components, experiment=experiment, experiment_id=result.experiment_id, result_id=result.result_id, tags=result.tags, backend=backend, run_time=run_time, created_time=created_time, **extra_values, ) if self.auto_save: result.save() else: experiment = experiment or self.experiment_type experiment_id = experiment_id or self.experiment_id tags = tags or [] backend = backend or self.backend_name uid = self._analysis_results.add_data( result_id=result_id, name=name, value=value, quality=quality, components=components, experiment=experiment, experiment_id=experiment_id, tags=tags or [], backend=backend, run_time=run_time, created_time=created_time, **extra_values, ) if self.auto_save and self._infer_service(warn=True): service_result = _series_to_service_result( series=self._analysis_results.get_data(uid, columns="all").iloc[0], service=self.service, auto_save=False, ) service_result.save()
[docs] @do_auto_save def delete_analysis_result( self, result_key: Union[int, str], ) -> list[str]: """Delete the analysis result. Args: result_key: ID or index of the analysis result to be deleted. Returns: Deleted analysis result IDs. Raises: ExperimentEntryNotFound: If analysis result not found or multiple entries are found. """ uids = self._analysis_results.del_data(result_key) if self.auto_save and self._infer_service(warn=True): with service_exception_to_warning(): for uid in uids: self.service.delete_analysis_result(result_id=uid) else: self._deleted_analysis_results.extend(uids) return uids
def _retrieve_analysis_results(self, refresh: bool = False): """Retrieve service analysis results. Args: refresh: Retrieve the latest analysis results from the server, if an experiment service is available. """ # Get job results if missing experiment data. if self.service and (len(self._analysis_results) == 0 or refresh): retrieved_results = self.service.analysis_results( experiment_id=self.experiment_id, limit=None, json_decoder=self._json_decoder ) for result in retrieved_results: # Canonicalize IBM specific data structure. # TODO define proper data schema on frontend and delegate this to service. cano_quality = AnalysisResult.RESULT_QUALITY_TO_TEXT.get(result.quality, "unknown") cano_components = [to_component(c) for c in result.device_components] extra = result.result_data["_extra"] if result.chisq is not None: extra["chisq"] = result.chisq self._analysis_results.add_data( name=result.result_type, value=result.result_data["_value"], quality=cano_quality, components=cano_components, experiment_id=result.experiment_id, result_id=result.result_id, tags=result.tags, backend=result.backend_name, created_time=result.creation_datetime, **extra, )
[docs] @deprecate_arg( name="dataframe", deprecation_description="Setting ``dataframe`` to False in analysis_results", since="0.6", package_name="qiskit-experiments", pending=True, predicate=lambda dataframe: not dataframe, ) def analysis_results( self, index: int | slice | str | None = None, refresh: bool = False, block: bool = True, timeout: float | None = None, columns: str | list[str] = "default", dataframe: bool = False, ) -> AnalysisResult | list[AnalysisResult] | pd.DataFrame: """Return analysis results associated with this experiment. .. caution:: Retrieving analysis results by a numerical index, whether an integer or a slice, is deprecated as of 0.6 and will be removed in a future release. Use the name or ID of the result instead. When this method is called with ``dataframe=True`` you will receive matched result entries with the ``index`` condition in the dataframe format. You can access a certain entry value by specifying its row index by either row number or short index string. For example, .. jupyter-input:: results = exp_data.analysis_results("res1", dataframe=True) print(results) .. jupyter-output:: name experiment components value quality backend run_time 7dd286f4 res1 MyExp [Q0, Q1] 1 good test1 2024-02-06 13:46 f62042a7 res1 MyExp [Q2, Q3] 2 good test1 2024-02-06 13:46 Getting the first result value with a row number (``iloc``). .. code-block:: python value = results.iloc[0].value Getting the first result value with a short index (``loc``). .. code-block:: python value = results.loc["7dd286f4"] See the pandas `DataFrame`_ documentation for the tips about data handling. .. _DataFrame: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html Args: index: Index of the analysis result to be returned. Several types are accepted for convenience: * None: Return all analysis results. * int: Specific index of the analysis results. * slice: A list slice of indexes. * str: ID or name of the analysis result. refresh: Retrieve the latest analysis results from the server, if an experiment service is available. block: If ``True``, block for any analysis callbacks to finish running. timeout: max time in seconds to wait for analysis callbacks to finish running. columns: Specifying a set of columns to return. You can pass a list of each column name to return, otherwise builtin column groups are available: * ``all``: Return all columns, including metadata to communicate with the experiment service, such as entry IDs. * ``default``: Return columns including analysis result with supplementary information about experiment. * ``minimal``: Return only analysis subroutine returns. dataframe: Set to ``True`` to return analysis results in the dataframe format. Returns: A copy of analysis results data. Updating the returned object doesn't mutate the original dataset. Raises: ExperimentEntryNotFound: If the entry cannot be found. """ if block: self._wait_for_futures( self._analysis_futures.values(), name="analysis", timeout=timeout ) self._retrieve_analysis_results(refresh=refresh) if dataframe: return self._analysis_results.get_data(index, columns=columns) # Convert back into List[AnalysisResult] which is payload for IBM experiment service. # This will be removed in future version. tmp_df = self._analysis_results.get_data(index, columns="all") service_results = [] for _, series in tmp_df.iterrows(): service_results.append( _series_to_service_result( series=series, service=self.service, auto_save=self._auto_save, ) ) if index == 0 and tmp_df.iloc[0]["name"].startswith("@"): warnings.warn( "Curve fit results have moved to experiment artifacts and will be removed " "from analysis results in a future release. Use " 'expdata.artifacts("fit_summary").data to access curve fit results.', DeprecationWarning, ) elif isinstance(index, (int, slice)): warnings.warn( "Accessing analysis results via a numerical index is deprecated and will be " "removed in a future release. Use the ID or name of the analysis result " "instead.", DeprecationWarning, ) if len(service_results) == 1 and index is not None: return service_results[0] return service_results
# Save and load from the database
[docs] def save_metadata(self) -> None: """Save this experiments metadata to a database service. .. note:: This method does not save analysis results, figures, or artifacts. Use :meth:`save` for general saving of all experiment data. See :meth:`qiskit.providers.experiment.IBMExperimentService.create_experiment` for fields that are saved. """ self._infer_service(warn=False) self._save_experiment_metadata() for data in self.child_data(): data.save_metadata()
def _save_experiment_metadata(self, suppress_errors: bool = True) -> None: """Save this experiments metadata to a database service. Args: suppress_errors: should the method catch exceptions (true) or pass them on, potentially aborting the experiment (false) Raises: QiskitError: If the save to the database failed .. note:: This method does not save analysis results nor figures. Use :meth:`save` for general saving of all experiment data. See :meth:`qiskit.providers.experiment.IBMExperimentService.create_experiment` for fields that are saved. """ if not self.service: LOG.warning( "Experiment cannot be saved because no experiment service is available. " "An experiment service is available, for example, " "when using an IBM Quantum backend." ) return try: handle_metadata_separately = self._metadata_too_large() if handle_metadata_separately: metadata = self._db_data.metadata self._db_data.metadata = {} result = self.service.create_or_update_experiment( self._db_data, json_encoder=self._json_encoder, create=not self._created_in_db ) if isinstance(result, dict): created_datetime = result.get("created_at", None) updated_datetime = result.get("updated_at", None) self._db_data.creation_datetime = parse_utc_datetime(created_datetime) self._db_data.updated_datetime = parse_utc_datetime(updated_datetime) self._created_in_db = True if handle_metadata_separately: self.service.file_upload( self._db_data.experiment_id, self._metadata_filename, metadata, json_encoder=self._json_encoder, ) self._db_data.metadata = metadata except Exception as ex: # pylint: disable=broad-except # Don't automatically fail the experiment just because its data cannot be saved. LOG.error("Unable to save the experiment data: %s", traceback.format_exc()) if not suppress_errors: raise QiskitError(f"Experiment data save failed\nError Message:\n{str(ex)}") from ex def _metadata_too_large(self): """Determines whether the metadata should be stored in a separate file""" # currently the entire POST JSON request body is limited by default to 100kb total_metadata_size = sys.getsizeof(json.dumps(self.metadata, cls=self._json_encoder)) return total_metadata_size > 10000 # Save and load from the database
[docs] def save( self, suppress_errors: bool = True, max_workers: int = 3, save_figures: bool = True, save_artifacts: bool = True, save_children: bool = True, ) -> None: """Save the experiment data to a database service. Args: suppress_errors: should the method catch exceptions (true) or pass them on, potentially aborting the experiment (false) max_workers: Maximum number of concurrent worker threads (default 3, maximum 10) save_figures: Whether to save figures in the database or not save_artifacts: Whether to save artifacts in the database save_children: For composite experiments, whether to save children as well Raises: ExperimentDataSaveFailed: If no experiment database service was found, or the experiment service failed to save .. note:: This saves the experiment metadata, all analysis results, and all figures. Depending on the number of figures and analysis results this operation could take a while. To only update a previously saved experiments metadata (eg for additional tags or notes) use :meth:`save_metadata`. """ # TODO - track changes self._infer_service(warn=False) if not self.service: LOG.warning( "Experiment cannot be saved because no experiment service is available. " "An experiment service is available, for example, " "when using an IBM Quantum backend." ) if suppress_errors: return else: raise ExperimentDataSaveFailed("No service found") if max_workers > self._max_workers_cap: LOG.warning( "max_workers cannot be larger than %s. Setting max_workers = %s now.", self._max_workers_cap, self._max_workers_cap, ) max_workers = self._max_workers_cap if save_artifacts: # populate the metadata entry for artifact file names self.metadata["artifact_files"] = { f"{artifact.name}.zip" for artifact in self._artifacts.values() } self._save_experiment_metadata(suppress_errors=suppress_errors) if not self._created_in_db: LOG.warning("Could not save experiment metadata to DB, aborting experiment save") return analysis_results_to_create = [] for _, series in self._analysis_results.dataframe.iterrows(): # TODO We should support saving entire dataframe # Calling API per entry takes huge amount of time. legacy_result = _series_to_service_result( series=series, service=self.service, auto_save=False, ) analysis_results_to_create.append(legacy_result._db_data) try: self.service.create_analysis_results( data=analysis_results_to_create, blocking=True, json_encoder=self._json_encoder, max_workers=max_workers, ) except Exception as ex: # pylint: disable=broad-except # Don't automatically fail the experiment just because its data cannot be saved. LOG.error("Unable to save the experiment data: %s", traceback.format_exc()) if not suppress_errors: raise ExperimentDataSaveFailed( f"Analysis result save failed\nError Message:\n{str(ex)}" ) from ex for result in self._deleted_analysis_results.copy(): with service_exception_to_warning(): self.service.delete_analysis_result(result_id=result) self._deleted_analysis_results.remove(result) if save_figures: with self._figures.lock: figures_to_create = [] for name, figure in self._figures.items(): if figure is None: continue # currently only the figure and its name are stored in the database if isinstance(figure, FigureData): figure = figure.figure LOG.debug("Figure metadata is currently not saved to the database") if isinstance(figure, pyplot.Figure): figure = plot_to_svg_bytes(figure) figures_to_create.append((figure, name)) self.service.create_figures( experiment_id=self.experiment_id, figure_list=figures_to_create, blocking=True, max_workers=max_workers, ) for name in self._deleted_figures.copy(): with service_exception_to_warning(): self.service.delete_figure(experiment_id=self.experiment_id, figure_name=name) self._deleted_figures.remove(name) # save artifacts if save_artifacts: with self._artifacts.lock: # make dictionary {artifact name: [artifact ids]} artifact_list = defaultdict(list) for artifact in self._artifacts.values(): artifact_list[artifact.name].append(artifact.artifact_id) try: for artifact_name, artifact_ids in artifact_list.items(): file_zipped = objs_to_zip( artifact_ids, [self._artifacts[artifact_id] for artifact_id in artifact_ids], json_encoder=self._json_encoder, ) self.service.file_upload( experiment_id=self.experiment_id, file_name=f"{artifact_name}.zip", file_data=file_zipped, ) except Exception: # pylint: disable=broad-except: LOG.error("Unable to save artifacts: %s", traceback.format_exc()) # Upload a blank file if the whole file should be deleted # TODO: replace with direct artifact deletion when available for artifact_name in self._deleted_artifacts.copy(): try: # Don't overwrite with a blank file if there's still artifacts with this name self.artifacts(artifact_name) except Exception: # pylint: disable=broad-except: with service_exception_to_warning(): self.service.file_upload( experiment_id=self.experiment_id, file_name=f"{artifact_name}.zip", file_data=None, ) # Even if we didn't overwrite an artifact file, we don't need to keep this because # an existing artifact(s) needs to be deleted to delete the artifact file in the future self._deleted_artifacts.remove(artifact_name) if not self.service.local and self.verbose: print( "You can view the experiment online at " f"https://quantum.ibm.com/experiments/{self.experiment_id}" ) # handle children, but without additional prints if save_children: for data in self._child_data.values(): original_verbose = data.verbose data.verbose = False data.save( suppress_errors=suppress_errors, max_workers=max_workers, save_figures=save_figures, save_artifacts=save_artifacts, ) data.verbose = original_verbose
[docs] def jobs(self) -> List[Job]: """Return a list of jobs for the experiment""" return self._jobs.values()
[docs] def cancel_jobs( self, ids: str | list[str] | None = None, ) -> bool: """Cancel any running jobs. Args: ids: Job(s) to cancel. If None all non-finished jobs will be cancelled. Returns: True if the specified jobs were successfully cancelled otherwise false. """ if isinstance(ids, str): ids = [ids] with self._jobs.lock: all_cancelled = True for jid, job in reversed(self._jobs.items()): if ids and jid not in ids: # Skip cancelling this callback continue if job and job.status() not in JOB_FINAL_STATES: try: job.cancel() LOG.warning("Cancelled job [Job ID: %s]", jid) except Exception as err: # pylint: disable=broad-except all_cancelled = False LOG.warning("Unable to cancel job [Job ID: %s]:\n%s", jid, err) continue # Remove done or cancelled job futures if jid in self._job_futures: del self._job_futures[jid] return all_cancelled
[docs] def cancel_analysis( self, ids: str | list[str] | None = None, ) -> bool: """Cancel any queued analysis callbacks. .. note:: A currently running analysis callback cannot be cancelled. Args: ids: Analysis callback(s) to cancel. If None all non-finished analysis will be cancelled. Returns: True if the specified analysis callbacks were successfully cancelled otherwise false. """ if isinstance(ids, str): ids = [ids] # Lock analysis futures so we can't add more while trying to cancel with self._analysis_futures.lock: all_cancelled = True not_running = [] for cid, callback in reversed(self._analysis_callbacks.items()): if ids and cid not in ids: # Skip cancelling this callback continue # Set event to cancel callback callback.event.set() # Check for running callback that can't be cancelled if callback.status == AnalysisStatus.RUNNING: all_cancelled = False LOG.warning( "Unable to cancel running analysis callback [Experiment ID: %s]" "[Analysis Callback ID: %s]", self.experiment_id, cid, ) else: not_running.append(cid) # Wait for completion of other futures cancelled via event.set waited = futures.wait([self._analysis_futures[cid] for cid in not_running], timeout=1) # Get futures that didn't raise exception for fut in waited.done: if fut.done() and not fut.exception(): cid = fut.result()[0] if cid in self._analysis_futures: del self._analysis_futures[cid] return all_cancelled
[docs] def cancel(self) -> bool: """Attempt to cancel any running jobs and queued analysis callbacks. .. note:: A running analysis callback cannot be cancelled. Returns: True if all jobs and analysis are successfully cancelled, otherwise false. """ # Cancel analysis first since it is queued on jobs, then cancel jobs # otherwise there can be a race issue when analysis starts running # as soon as jobs are cancelled analysis_cancelled = self.cancel_analysis() jobs_cancelled = self.cancel_jobs() return analysis_cancelled and jobs_cancelled
[docs] def block_for_results(self, timeout: Optional[float] = None) -> "ExperimentData": """Block until all pending jobs and analysis callbacks finish. Args: timeout: Timeout in seconds for waiting for results. Returns: The experiment data with finished jobs and post-processing. """ start_time = time.time() with self._job_futures.lock and self._analysis_futures.lock: # Lock threads to get all current job and analysis futures # at the time of function call and then release the lock job_ids = self._job_futures.keys() job_futs = self._job_futures.values() analysis_ids = self._analysis_futures.keys() analysis_futs = self._analysis_futures.values() # Wait for futures self._wait_for_futures(job_futs + analysis_futs, name="jobs and analysis", timeout=timeout) # Clean up done job futures num_jobs = len(job_ids) for jid, fut in zip(job_ids, job_futs): if (fut.done() and not fut.exception()) or fut.cancelled(): if jid in self._job_futures: del self._job_futures[jid] num_jobs -= 1 # Clean up done analysis futures num_analysis = len(analysis_ids) for cid, fut in zip(analysis_ids, analysis_futs): if (fut.done() and not fut.exception()) or fut.cancelled(): if cid in self._analysis_futures: del self._analysis_futures[cid] num_analysis -= 1 # Check if more futures got added while this function was running # and block recursively. This could happen if an analysis callback # spawns another callback or creates more jobs if len(self._job_futures) > num_jobs or len(self._analysis_futures) > num_analysis: time_taken = time.time() - start_time if timeout is not None: timeout = max(0, timeout - time_taken) return self.block_for_results(timeout=timeout) return self
def _wait_for_futures( self, futs: List[futures.Future], name: str = "futures", timeout: Optional[float] = None ) -> bool: """Wait for jobs to finish running. Args: futs: Job or analysis futures to wait for. name: type name for future for logger messages. timeout: The length of time to wait for all jobs before returning False. Returns: True if all jobs finished. False if timeout time was reached or any jobs were cancelled or had an exception. """ waited = futures.wait(futs, timeout=timeout) value = True # Log futures still running after timeout if waited.not_done: LOG.info( "Waiting for %s timed out before completion [Experiment ID: %s].", name, self.experiment_id, ) value = False # Check for futures that were cancelled or errored excepts = "" for fut in waited.done: ex = fut.exception() if ex: excepts += "\n".join(traceback.format_exception(type(ex), ex, ex.__traceback__)) value = False elif fut.cancelled(): LOG.debug( "%s was cancelled before completion [Experiment ID: %s]", name, self.experiment_id, ) value = False elif not fut.result()[1]: # The job/analysis did not succeed, and the failure reflects in the second # returned value of _add_job_data/_run_analysis_callback. See details in Issue #866. value = False if excepts: LOG.error( "%s raised exceptions [Experiment ID: %s]:%s", name, self.experiment_id, excepts ) return value
[docs] def status(self) -> ExperimentStatus: """Return the experiment status. Possible return values for :class:`.ExperimentStatus` are * :attr:`~.ExperimentStatus.EMPTY` - experiment data is empty * :attr:`~.ExperimentStatus.INITIALIZING` - experiment jobs are being initialized * :attr:`~.ExperimentStatus.QUEUED` - experiment jobs are queued * :attr:`~.ExperimentStatus.RUNNING` - experiment jobs is actively running * :attr:`~.ExperimentStatus.CANCELLED` - experiment jobs or analysis has been cancelled * :attr:`~.ExperimentStatus.POST_PROCESSING` - experiment analysis is actively running * :attr:`~.ExperimentStatus.DONE` - experiment jobs and analysis have successfully run * :attr:`~.ExperimentStatus.ERROR` - experiment jobs or analysis incurred an error .. note:: If an experiment has status :attr:`~.ExperimentStatus.ERROR` there may still be pending or running jobs. In these cases it may be beneficial to call :meth:`cancel_jobs` to terminate these remaining jobs. Returns: The experiment status. """ if all( len(container) == 0 for container in [ self._result_data, self._jobs, self._job_futures, self._analysis_callbacks, self._analysis_futures, self._figures, self._analysis_results, ] ): return ExperimentStatus.EMPTY # Return job status is job is not DONE try: return { JobStatus.INITIALIZING: ExperimentStatus.INITIALIZING, JobStatus.QUEUED: ExperimentStatus.QUEUED, JobStatus.VALIDATING: ExperimentStatus.VALIDATING, JobStatus.RUNNING: ExperimentStatus.RUNNING, JobStatus.CANCELLED: ExperimentStatus.CANCELLED, JobStatus.ERROR: ExperimentStatus.ERROR, }[self.job_status()] except KeyError: pass # Return analysis status if Done, cancelled or error try: return { AnalysisStatus.DONE: ExperimentStatus.DONE, AnalysisStatus.CANCELLED: ExperimentStatus.CANCELLED, AnalysisStatus.ERROR: ExperimentStatus.ERROR, }[self.analysis_status()] except KeyError: return ExperimentStatus.POST_PROCESSING
[docs] def job_status(self) -> JobStatus: """Return the experiment job execution status. Possible return values for :class:`qiskit.providers.jobstatus.JobStatus` are * ``ERROR`` - if any job incurred an error * ``CANCELLED`` - if any job is cancelled. * ``RUNNING`` - if any job is still running. * ``QUEUED`` - if any job is queued. * ``VALIDATING`` - if any job is being validated. * ``INITIALIZING`` - if any job is being initialized. * ``DONE`` - if all jobs are finished. .. note:: If an experiment has status ``ERROR`` or ``CANCELLED`` there may still be pending or running jobs. In these cases it may be beneficial to call :meth:`cancel_jobs` to terminate these remaining jobs. Returns: The job execution status. """ statuses = set() with self._jobs.lock: # No jobs present if not self._jobs: return JobStatus.DONE statuses = set() for job in self._jobs.values(): if job: statuses.add(job.status()) # If any jobs are in non-DONE state return that state for stat in [ JobStatus.ERROR, JobStatus.CANCELLED, JobStatus.RUNNING, JobStatus.QUEUED, JobStatus.VALIDATING, JobStatus.INITIALIZING, ]: if stat in statuses: return stat return JobStatus.DONE
[docs] def analysis_status(self) -> AnalysisStatus: """Return the data analysis post-processing status. Possible return values for :class:`.AnalysisStatus` are * :attr:`~.AnalysisStatus.ERROR` - if any analysis callback incurred an error * :attr:`~.AnalysisStatus.CANCELLED` - if any analysis callback is cancelled. * :attr:`~.AnalysisStatus.RUNNING` - if any analysis callback is actively running. * :attr:`~.AnalysisStatus.QUEUED` - if any analysis callback is queued. * :attr:`~.AnalysisStatus.DONE` - if all analysis callbacks have successfully run. Returns: Then analysis status. """ statuses = set() for status in self._analysis_callbacks.values(): statuses.add(status.status) for stat in [ AnalysisStatus.ERROR, AnalysisStatus.CANCELLED, AnalysisStatus.RUNNING, AnalysisStatus.QUEUED, ]: if stat in statuses: return stat return AnalysisStatus.DONE
[docs] def job_errors(self) -> str: """Return any errors encountered in job execution.""" errors = [] # Get any job errors for job in self._jobs.values(): if job and job.status() == JobStatus.ERROR: if hasattr(job, "error_message"): error_msg = job.error_message() else: error_msg = "" errors.append(f"\n[Job ID: {job.job_id()}]: {error_msg}") # Get any job futures errors: for jid, fut in self._job_futures.items(): if fut and fut.done() and fut.exception(): ex = fut.exception() errors.append( f"[Job ID: {jid}]" "\n".join(traceback.format_exception(type(ex), ex, ex.__traceback__)) ) return "".join(errors)
[docs] def analysis_errors(self) -> str: """Return any errors encountered during analysis callbacks.""" errors = [] # Get any callback errors for cid, callback in self._analysis_callbacks.items(): if callback.status == AnalysisStatus.ERROR: errors.append(f"\n[Analysis Callback ID: {cid}]: {callback.error_msg}") return "".join(errors)
[docs] def errors(self) -> str: """Return errors encountered during job and analysis execution. .. note:: To display only job or analysis errors use the :meth:`job_errors` or :meth:`analysis_errors` methods. Returns: Experiment errors. """ return self.job_errors() + self.analysis_errors()
# Children handling
[docs] def add_child_data(self, experiment_data: ExperimentData): """Add child experiment data to the current experiment data""" experiment_data.parent_id = self.experiment_id self._child_data[experiment_data.experiment_id] = experiment_data self.metadata["child_data_ids"] = self._child_data.keys()
[docs] def child_data( self, index: Optional[Union[int, slice, str]] = None ) -> Union[ExperimentData, List[ExperimentData]]: """Return child experiment data. Args: index: Index of the child experiment data to be returned. Several types are accepted for convenience: * None: Return all child data. * int: Specific index of the child data. * slice: A list slice of indexes. * str: experiment ID of the child data. Returns: The requested single or list of child experiment data. Raises: QiskitError: If the index or ID of the child experiment data cannot be found. """ if index is None: return self._child_data.values() if isinstance(index, (int, slice)): return self._child_data.values()[index] if isinstance(index, str): return self._child_data[index] raise QiskitError(f"Invalid index type {type(index)}.")
[docs] @classmethod def load( cls, experiment_id: str, service: Optional[IBMExperimentService] = None, provider: Optional[Provider] = None, ) -> "ExperimentData": """Load a saved experiment data from a database service. Args: experiment_id: Experiment ID. service: the database service. provider: an IBMProvider required for loading job data and can be used to initialize the service. When using :external+qiskit_ibm_runtime:doc:`qiskit-ibm-runtime <index>`, this is the :class:`~qiskit_ibm_runtime.QiskitRuntimeService` and should not be confused with the experiment database service :meth:`qiskit_ibm_experiment.IBMExperimentService`. Returns: The loaded experiment data. Raises: ExperimentDataError: If not service nor provider were given. """ if service is None: if provider is None: raise ExperimentDataError( "Loading an experiment requires a valid Qiskit provider or experiment service." ) service = cls.get_service_from_provider(provider) data = service.experiment(experiment_id, json_decoder=cls._json_decoder) if service.experiment_has_file(experiment_id, cls._metadata_filename): metadata = service.file_download( experiment_id, cls._metadata_filename, json_decoder=cls._json_decoder ) data.metadata.update(metadata) expdata = cls(service=service, db_data=data, provider=provider) # Retrieve data and analysis results # Maybe this isn't necessary but the repr of the class should # be updated to show correct number of results including remote ones expdata._retrieve_data() expdata._retrieve_analysis_results() # Recreate artifacts try: if "artifact_files" in expdata.metadata: for filename in expdata.metadata["artifact_files"]: if service.experiment_has_file(experiment_id, filename): artifact_file = service.file_download(experiment_id, filename) for artifact in zip_to_objs(artifact_file, json_decoder=cls._json_decoder): expdata.add_artifacts(artifact) except Exception: # pylint: disable=broad-except: LOG.error("Unable to load artifacts: %s", traceback.format_exc()) # mark it as existing in the DB expdata._created_in_db = True child_data_ids = expdata.metadata.pop("child_data_ids", []) child_data = [ ExperimentData.load(child_id, service, provider) for child_id in child_data_ids ] expdata._set_child_data(child_data) return expdata
[docs] def copy(self, copy_results: bool = True) -> "ExperimentData": """Make a copy of the experiment data with a new experiment ID. Args: copy_results: If True copy the analysis results, figures, and artifacts into the returned container, along with the experiment data and metadata. If False only copy the experiment data and metadata. Returns: A copy of the experiment data object with the same data but different IDs. .. note: If analysis results and figures are copied they will also have new result IDs and figure names generated for the copies. This method can not be called from an analysis callback. It waits for analysis callbacks to complete before copying analysis results. """ new_instance = ExperimentData( backend=self.backend, service=self.service, provider=self.provider, parent_id=self.parent_id, job_ids=self.job_ids, child_data=list(self._child_data.values()), verbose=self.verbose, ) new_instance._db_data = self._db_data.copy() # Figure names shouldn't be copied over new_instance._db_data.figure_names = [] new_instance._db_data.experiment_id = str( uuid.uuid4() ) # different id for copied experiment if self.experiment is None: new_instance._experiment = None else: new_instance._experiment = self.experiment.copy() LOG.debug( "Copying experiment data [Experiment ID: %s]: %s", self.experiment_id, new_instance.experiment_id, ) # Copy basic properties and metadata new_instance._jobs = self._jobs.copy_object() new_instance._auto_save = self._auto_save new_instance._extra_data = self._extra_data # Copy circuit result data and jobs with self._result_data.lock: # Hold the lock so no new data can be added. new_instance._result_data = self._result_data.copy_object() for jid, fut in self._job_futures.items(): if not fut.done(): new_instance._add_job_future(new_instance._jobs[jid]) # If not copying results return the object if not copy_results: return new_instance # Copy results and figures. # This requires analysis callbacks to finish self._wait_for_futures(self._analysis_futures.values(), name="analysis") new_instance._analysis_results = self._analysis_results.copy() with self._figures.lock: new_instance._figures = ThreadSafeOrderedDict() new_instance.add_figures(self._figures.values()) with self._artifacts.lock: new_instance._artifacts = ThreadSafeOrderedDict() new_instance.add_artifacts(self._artifacts.values()) # Recursively copy child data child_data = [data.copy(copy_results=copy_results) for data in self.child_data()] new_instance._set_child_data(child_data) return new_instance
def _set_child_data(self, child_data: List[ExperimentData]): """Set child experiment data for the current experiment.""" self._child_data = ThreadSafeOrderedDict() for data in child_data: self.add_child_data(data) self._db_data.metadata["child_data_ids"] = self._child_data.keys()
[docs] def add_tags_recursive(self, tags2add: List[str]) -> None: """Add tags to this experiment itself and its descendants Args: tags2add - the tags that will be added to the existing tags """ self.tags += tags2add for data in self._child_data.values(): data.add_tags_recursive(tags2add)
[docs] def remove_tags_recursive(self, tags2remove: List[str]) -> None: """Remove tags from this experiment itself and its descendants Args: tags2remove - the tags that will be removed from the existing tags """ self.tags = [x for x in self.tags if x not in tags2remove] for data in self._child_data.values(): data.remove_tags_recursive(tags2remove)
# representation and serialization def __repr__(self): out = f"{type(self).__name__}({self.experiment_type}" out += f", {self.experiment_id}" if self.parent_id: out += f", parent_id={self.parent_id}" if self.tags: out += f", tags={self.tags}" if self.job_ids: out += f", job_ids={self.job_ids}" if self.share_level: out += f", share_level={self.share_level}" if self.metadata: out += f", metadata=<{len(self.metadata)} items>" if self.figure_names: out += f", figure_names={self.figure_names}" if self.notes: out += f", notes={self.notes}" if self._extra_data: for key, val in self._extra_data.items(): out += f", {key}={repr(val)}" out += ")" return out def __getattr__(self, name: str) -> Any: try: return self._extra_data[name] except KeyError: # pylint: disable=raise-missing-from raise AttributeError(f"Attribute {name} is not defined") def _safe_serialize_jobs(self): """Return serializable object for stored jobs""" # Since Job objects are not serializable this removes # them from the jobs dict and returns {job_id: None} # that can be used to retrieve jobs from a service after loading jobs = ThreadSafeOrderedDict() with self._jobs.lock: for jid in self._jobs.keys(): jobs[jid] = None return jobs def _safe_serialize_figures(self): """Return serializable object for stored figures""" # Convert any MPL figures into SVG images before serializing figures = ThreadSafeOrderedDict() with self._figures.lock: for name, figure in self._figures.items(): if isinstance(figure, pyplot.Figure): figures[name] = plot_to_svg_bytes(figure) else: figures[name] = figure return figures def __json_encode__(self): if any(not fut.done() for fut in self._job_futures.values()): raise QiskitError( "Not all experiment jobs have finished. Jobs must be " "cancelled or done to serialize experiment data." ) if any(not fut.done() for fut in self._analysis_futures.values()): raise QiskitError( "Not all experiment analysis has finished. Analysis must be " "cancelled or done to serialize experiment data." ) json_value = { "_db_data": self._db_data, "_analysis_results": self._analysis_results, "_analysis_callbacks": self._analysis_callbacks, "_deleted_figures": self._deleted_figures, "_deleted_analysis_results": self._deleted_analysis_results, "_result_data": self._result_data, "_extra_data": self._extra_data, "_created_in_db": self._created_in_db, "_figures": self._safe_serialize_figures(), # Convert figures to SVG "_jobs": self._safe_serialize_jobs(), # Handle non-serializable objects "_artifacts": self._artifacts, "_experiment": self._experiment, "_child_data": self._child_data, "_running_time": self._running_time, } # the attribute self._service in charge of the connection and communication with the # experiment db. It doesn't have meaning in the json format so there is no need to serialize # it. for att in ["_service", "_backend"]: json_value[att] = None value = getattr(self, att) if value is not None: LOG.info("%s cannot be JSON serialized", str(type(value))) return json_value @classmethod def __json_decode__(cls, value): ret = cls() for att, att_val in value.items(): setattr(ret, att, att_val) return ret def __getstate__(self): if any(not fut.done() for fut in self._job_futures.values()): LOG.warning( "Not all job futures have finished." " Data from running futures will not be serialized." ) if any(not fut.done() for fut in self._analysis_futures.values()): LOG.warning( "Not all analysis callbacks have finished." " Results from running callbacks will not be serialized." ) state = self.__dict__.copy() # Remove non-pickleable attributes for key in ["_job_futures", "_analysis_futures", "_analysis_executor", "_monitor_executor"]: del state[key] # Convert figures to SVG state["_figures"] = self._safe_serialize_figures() # Handle partially pickleable attributes state["_jobs"] = self._safe_serialize_jobs() return state def __setstate__(self, state): self.__dict__.update(state) # Initialize non-pickled attributes self._job_futures = ThreadSafeOrderedDict() self._analysis_futures = ThreadSafeOrderedDict() self._analysis_executor = futures.ThreadPoolExecutor(max_workers=1) self._monitor_executor = futures.ThreadPoolExecutor() def __str__(self): line = 51 * "-" n_res = len(self._analysis_results) status = self.status() ret = line ret += f"\nExperiment: {self.experiment_type}" ret += f"\nExperiment ID: {self.experiment_id}" if self._db_data.parent_id: ret += f"\nParent ID: {self._db_data.parent_id}" if self._child_data: ret += f"\nChild Experiment Data: {len(self._child_data)}" ret += f"\nStatus: {status}" if status == "ERROR": ret += "\n " ret += "\n ".join(self._errors) if self.backend: ret += f"\nBackend: {self.backend}" if self.tags: ret += f"\nTags: {self.tags}" ret += f"\nData: {len(self._result_data)}" ret += f"\nAnalysis Results: {n_res}" ret += f"\nFigures: {len(self._figures)}" ret += f"\nArtifacts: {len(self._artifacts)}" return ret
[docs] def add_artifacts(self, artifacts: ArtifactData | list[ArtifactData], overwrite: bool = False): """Add artifacts to experiment. The artifact ID must be unique. Args: artifacts: Artifact or list of artifacts to be added. overwrite: Whether to overwrite the existing artifact. """ if isinstance(artifacts, ArtifactData): artifacts = [artifacts] for artifact in artifacts: if artifact.artifact_id in self._artifacts and not overwrite: raise ValueError( "An artifact with id {artifact.id} already exists." "Set overwrite to True if you want to overwrite the existing" "artifact." ) self._artifacts[artifact.artifact_id] = artifact
[docs] def delete_artifact( self, artifact_key: int | str, ) -> str | list[str]: """Delete specified artifact data. Args: artifact_key: UID or name of the artifact. Deleting by index is deprecated. Returns: Deleted artifact ids. """ if isinstance(artifact_key, int): warnings.warn( "Accessing artifacts via a numerical index is deprecated and will be " "removed in a future release. Use the ID or name of the artifact " "instead.", DeprecationWarning, ) artifact_keys = self._find_artifact_keys(artifact_key) for key in artifact_keys: self._deleted_artifacts.add(self._artifacts[key].name) del self._artifacts[key] if len(artifact_keys) == 1: return artifact_keys[0] return artifact_keys
[docs] def artifacts( self, artifact_key: int | str = None, ) -> ArtifactData | list[ArtifactData]: """Return specified artifact data. Args: artifact_key: UID or name of the artifact. Supplying a numerical index is deprecated. Returns: A list of specified artifact data. """ if artifact_key is None: return self._artifacts.values() elif isinstance(artifact_key, int): warnings.warn( "Accessing artifacts via a numerical index is deprecated and will be " "removed in a future release. Use the ID or name of the artifact " "instead.", DeprecationWarning, ) artifact_keys = self._find_artifact_keys(artifact_key) out = [] for key in artifact_keys: artifact_data = self._artifacts[key] out.append(artifact_data) if len(out) == 1: return out[0] return out
def _find_artifact_keys( self, artifact_key: int | str, ) -> list[str]: """A helper method to find artifact key.""" if isinstance(artifact_key, int): if artifact_key < 0 or artifact_key >= len(self._artifacts): raise ExperimentEntryNotFound(f"Artifact index {artifact_key} out of range.") return [self._artifacts.keys()[artifact_key]] if artifact_key not in self._artifacts: name_matched = [k for k, d in self._artifacts.items() if d.name == artifact_key] if len(name_matched) == 0: raise ExperimentEntryNotFound(f"Artifact key {artifact_key} not found.") return name_matched return [artifact_key]
@contextlib.contextmanager def service_exception_to_warning(): """Convert an exception raised by experiment service to a warning.""" try: yield except Exception: # pylint: disable=broad-except LOG.warning("Experiment service operation failed: %s", traceback.format_exc()) def _series_to_service_result( series: pd.Series, service: IBMExperimentService, auto_save: bool, source: Optional[Dict[str, Any]] = None, ) -> AnalysisResult: """Helper function to convert dataframe to AnalysisResult payload for IBM experiment service. .. note:: Now :class:`.AnalysisResult` is only used to save data in the experiment service. All local operations must be done with :class:`.AnalysisResultTable` dataframe. ExperimentData._analysis_results are totally decoupled from the model of IBM experiment service until this function is implicitly called. Args: series: Pandas dataframe Series (a row of dataframe). service: Experiment service. auto_save: Do auto save when entry value changes. Returns: Legacy AnalysisResult payload. """ # TODO This must be done on experiment service rather than by client. qe_result = AnalysisResultData.from_table_element(**series.replace({np.nan: None}).to_dict()) result_data = AnalysisResult.format_result_data( value=qe_result.value, extra=qe_result.extra, chisq=qe_result.chisq, source=source, ) # Overwrite formatted result data dictionary with original objects. # The format_result_data method implicitly deep copies input value and extra field, # but it means the dictionary stores input objects with different object id. # This affects computation of error propagation with ufloats, because it # recognizes the value correlation with object id. # See test.curve_analysis.test_baseclass.TestCurveAnalysis.test_end_to_end_compute_new_entry. result_data["_value"] = qe_result.value result_data["_extra"] = qe_result.extra # IBM Experiment Service doesn't have data field for experiment and run time. # These are added to extra field so that these data can be saved. result_data["_extra"]["experiment"] = qe_result.experiment result_data["_extra"]["run_time"] = qe_result.run_time try: quality = ResultQuality(str(qe_result.quality).upper()) except ValueError: quality = "unknown" experiment_service_payload = AnalysisResultDataclass( result_id=qe_result.result_id, experiment_id=qe_result.experiment_id, result_type=qe_result.name, result_data=result_data, device_components=list(map(to_component, qe_result.device_components)), quality=quality, tags=qe_result.tags, backend_name=qe_result.backend, creation_datetime=qe_result.created_time, chisq=qe_result.chisq, ) service_result = AnalysisResult() service_result.set_data(experiment_service_payload) with contextlib.suppress(ExperimentDataError): service_result.service = service service_result.auto_save = auto_save return service_result