# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Semi-deterministic rounding module"""
from __future__ import annotations
import numpy as np
from qiskit_optimization.algorithms import OptimizationResultStatus, SolutionSample
from qiskit_optimization.exceptions import QiskitOptimizationError
from .rounding_common import RoundingContext, RoundingResult, RoundingScheme
[documentos]class SemideterministicRounding(RoundingScheme):
"""Semi-deterministic rounding scheme
This is referred to as "Pauli rounding" in
https://arxiv.org/abs/2111.03167.
"""
def __init__(self, *, atol: float = 1e-8, seed: int | None = None):
"""
Args:
seed: Seed for random number generator, which is used to resolve
expectation values near zero to either +1 or -1.
atol: Absolute tolerance for determining whether an expectation value is zero.
"""
super().__init__()
self._rng = np.random.default_rng(seed)
self._atol = atol
[documentos] def round(self, rounding_context: RoundingContext) -> RoundingResult:
"""Perform semi-deterministic rounding
Args:
rounding_context: Rounding context containing information about the problem and solution.
Returns:
Result containing the rounded solution.
Raises:
QiskitOptimizationError: If the expectation values are not available in the context.
"""
if rounding_context.expectation_values is None:
raise QiskitOptimizationError(
"Semi-deterministic rounding requires the expectation values of the ",
"``RoundingContext`` to be available, but they are not.",
)
rounded_vars = np.where(
np.isclose(rounding_context.expectation_values, 0, atol=self._atol),
self._rng.integers(2, size=len(rounding_context.expectation_values)),
np.less_equal(rounding_context.expectation_values, 0).astype(int),
)
soln_samples = [
SolutionSample(
x=np.asarray(rounded_vars),
fval=rounding_context.encoding.problem.objective.evaluate(rounded_vars),
probability=1.0,
status=OptimizationResultStatus.SUCCESS
if rounding_context.encoding.problem.is_feasible(rounded_vars)
else OptimizationResultStatus.INFEASIBLE,
)
]
result = RoundingResult(
expectation_values=rounding_context.expectation_values, samples=soln_samples
)
return result