Source code for qiskit_optimization.algorithms.grover_optimizer

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2025.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""GroverOptimizer module"""
from __future__ import annotations

import logging
import math
import warnings
from copy import deepcopy
from typing import cast

import numpy as np
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library import QuadraticForm
from qiskit.passmanager import BasePassManager
from qiskit.primitives import BaseSamplerV1, BaseSamplerV2, PrimitiveResult, StatevectorSampler

from qiskit_optimization.algorithms.amplitude_amplifiers.grover import AmplificationProblem, Grover
from qiskit_optimization.algorithms.optimization_algorithm import (
    OptimizationAlgorithm,
    OptimizationResult,
    OptimizationResultStatus,
    SolutionSample,
)
from qiskit_optimization.converters import QuadraticProgramConverter, QuadraticProgramToQubo
from qiskit_optimization.exceptions import QiskitOptimizationError
from qiskit_optimization.problems import QuadraticProgram, Variable
from qiskit_optimization.utils import algorithm_globals

logger = logging.getLogger(__name__)


[docs] class GroverOptimizer(OptimizationAlgorithm): """Uses Grover Adaptive Search (GAS) to find the minimum of a QUBO function.""" def __init__( # pylint: disable=too-many-positional-arguments self, num_value_qubits: int, num_iterations: int = 3, converters: QuadraticProgramConverter | list[QuadraticProgramConverter] | None = None, penalty: float | None = None, sampler: BaseSamplerV1 | BaseSamplerV2 | None = None, pass_manager: BasePassManager | None = None, ) -> None: """ Args: num_value_qubits: The number of value qubits. num_iterations: The number of iterations the algorithm will search with no improvement. converters: The converters to use for converting a problem into a different form. By default, when None is specified, an internally created instance of :class:`~qiskit_optimization.converters.QuadraticProgramToQubo` will be used. penalty: The penalty factor used in the default :class:`~qiskit_optimization.converters.QuadraticProgramToQubo` converter sampler: A Sampler to use for sampling the results of the circuits. pass_manager: A pass manager to use to transpile the circuits Raises: ValueError: If both a quantum instance and sampler are set. TypeError: When there one of converters is an invalid type. """ self._num_value_qubits = num_value_qubits self._num_key_qubits = 0 self._n_iterations = num_iterations self._circuit_results = {} # type: dict self._converters = self._prepare_converters(converters, penalty) self._sampler = sampler self._pass_manager = pass_manager if isinstance(sampler, BaseSamplerV1): warnings.warn( "Using Sampler V1 is deprecated since 0.7.0. Instead use Sampler V2.", category=DeprecationWarning, stacklevel=2, ) if ( isinstance(sampler, BaseSamplerV2) and not isinstance(sampler, StatevectorSampler) and pass_manager is None ): warnings.warn( "Using Sampler V2 (other than StatevectorSampler) without a pass_manager " "may result in an error. Consider providing a pass_manager for proper " "circuit transpilation.", category=UserWarning, stacklevel=2, )
[docs] def get_compatibility_msg(self, problem: QuadraticProgram) -> str: """Checks whether a given problem can be solved with this optimizer. Checks whether the given problem is compatible, i.e., whether the problem can be converted to a QUBO, and otherwise, returns a message explaining the incompatibility. Args: problem: The optimization problem to check compatibility. Returns: A message describing the incompatibility. """ return QuadraticProgramToQubo.get_compatibility_msg(problem)
def _get_a_operator(self, qr_key_value, problem): quadratic = problem.objective.quadratic.to_array() linear = problem.objective.linear.to_array() offset = problem.objective.constant # Get circuit requirements from input. quadratic_form = QuadraticForm( self._num_value_qubits, quadratic, linear, offset, little_endian=False ) a_operator = QuantumCircuit(qr_key_value) a_operator.h(list(range(self._num_key_qubits))) a_operator.compose(quadratic_form, inplace=True) return a_operator def _get_oracle(self, qr_key_value): # Build negative value oracle O. if qr_key_value is None: qr_key_value = QuantumRegister(self._num_key_qubits + self._num_value_qubits) oracle_bit = QuantumRegister(1, "oracle") oracle = QuantumCircuit(qr_key_value, oracle_bit) oracle.z(self._num_key_qubits) # recognize negative values. def is_good_state(measurement): """Check whether ``measurement`` is a good state or not.""" value = measurement[ self._num_key_qubits : self._num_key_qubits + self._num_value_qubits ] return value[0] == "1" return oracle, is_good_state
[docs] def solve(self, problem: QuadraticProgram) -> OptimizationResult: """Tries to solve the given problem using the grover optimizer. Runs the optimizer to try to solve the optimization problem. If the problem cannot be, converted to a QUBO, this optimizer raises an exception due to incompatibility. Args: problem: The problem to be solved. Returns: The result of the optimizer applied to the problem. Raises: ValueError: If a quantum instance or a sampler has not been provided. ValueError: If both a quantum instance and sampler are set. AttributeError: If the quantum instance has not been set. QiskitOptimizationError: If the problem is incompatible with the optimizer. """ if self._sampler is None: raise ValueError("A sampler must be provided.") self._verify_compatibility(problem) # convert problem to minimization QUBO problem problem_ = self._convert(problem, self._converters) problem_init = deepcopy(problem_) self._num_key_qubits = len(problem_.objective.linear.to_array()) # Variables for tracking the optimum. optimum_found = False optimum_key = math.inf optimum_value = math.inf threshold = 0 n_key = self._num_key_qubits n_value = self._num_value_qubits # Variables for tracking the solutions encountered. num_solutions = 2**n_key keys_measured = [] # Variables for result object. operation_count = {} iteration = 0 samples = None raw_samples = None # Variables for stopping if we've hit the rotation max. rotations = 0 max_rotations = int(np.ceil(100 * np.pi / 4)) # Initialize oracle helper object. qr_key_value = QuantumRegister(self._num_key_qubits + self._num_value_qubits) orig_constant = problem_.objective.constant measurement = True oracle, is_good_state = self._get_oracle(qr_key_value) while not optimum_found: m = 1 improvement_found = False # Get oracle O and the state preparation operator A for the current threshold. problem_.objective.constant = orig_constant - threshold a_operator = self._get_a_operator(qr_key_value, problem_) # Iterate until we measure a negative. loops_with_no_improvement = 0 while not improvement_found: # Determine the number of rotations. loops_with_no_improvement += 1 rotation_count = int(algorithm_globals.random.integers(0, m)) rotations += rotation_count # Apply Grover's Algorithm to find values below the threshold. # TODO: Utilize Grover's incremental feature - requires changes to Grover. amp_problem = AmplificationProblem( oracle=oracle, state_preparation=a_operator, is_good_state=is_good_state, ) grover = Grover() circuit = grover.construct_circuit( problem=amp_problem, power=rotation_count, measurement=measurement ) # Get the next outcome. outcome = self._measure(circuit) k = int(outcome[0:n_key], 2) v = outcome[n_key : n_key + n_value] int_v = self._bin_to_int(v, n_value) + threshold logger.info("Outcome: %s", outcome) logger.info("Value Q(x): %s", int_v) # If the value is an improvement, we update the iteration parameters (e.g. oracle). if int_v < optimum_value: optimum_key = k optimum_value = int_v logger.info("Current Optimum Key: %s", optimum_key) logger.info("Current Optimum Value: %s", optimum_value) improvement_found = True threshold = optimum_value # trace out work qubits and store samples if self._sampler is not None: self._circuit_results = { i[-1 * n_key :]: v for i, v in self._circuit_results.items() } else: self._circuit_results = { i[-1 * n_key :]: v for i, v in self._circuit_results.items() } raw_samples = self._eigenvector_to_solutions( self._circuit_results, problem_init ) raw_samples.sort(key=lambda x: x.fval) samples, _ = self._interpret_samples(problem, raw_samples, self._converters) else: # Using Durr and Hoyer method, increase m. m = int(np.ceil(min(m * 8 / 7, 2 ** (n_key / 2)))) logger.info("No Improvement. M: %s", m) # Check if we've already seen this value. if k not in keys_measured: keys_measured.append(k) # Assume the optimal if any of the stop parameters are true. if ( loops_with_no_improvement >= self._n_iterations or len(keys_measured) == num_solutions or rotations >= max_rotations ): improvement_found = True optimum_found = True # Track the operation count. operations = circuit.count_ops() operation_count[iteration] = operations iteration += 1 logger.info("Operation Count: %s\n", operations) # If the constant is 0 and we didn't find a negative, the answer is likely 0. if optimum_value >= 0 and orig_constant == 0: optimum_key = 0 opt_x = np.array([1 if s == "1" else 0 for s in f"{optimum_key:{n_key}b}"]) # Compute function value of minimization QUBO fval = problem_init.objective.evaluate(opt_x) # cast binaries back to integers and eventually minimization to maximization return cast( GroverOptimizationResult, self._interpret( x=opt_x, converters=self._converters, problem=problem, result_class=GroverOptimizationResult, samples=samples, raw_samples=raw_samples, operation_counts=operation_count, n_input_qubits=n_key, n_output_qubits=n_value, intermediate_fval=fval, threshold=threshold, ), )
def _measure(self, circuit: QuantumCircuit) -> str: """Get probabilities from the given backend, and picks a random outcome.""" probs = self._get_prob_dist(circuit) logger.info("Frequencies: %s", probs) # Pick a random outcome. return algorithm_globals.random.choice(list(probs.keys()), 1, p=list(probs.values()))[0] def _get_prob_dist(self, qc: QuantumCircuit) -> dict[str, float]: """Gets probabilities from a given backend.""" if self._pass_manager: qc = self._pass_manager.run(qc) # Execute job and filter results. job = self._sampler.run([qc]) try: result = job.result() except Exception as exc: raise QiskitOptimizationError("Sampler job failed.") from exc if isinstance(result, PrimitiveResult): # SamplerV2 counts = getattr(result[0].data, qc.cregs[0].name).get_counts() shots = sum(counts.values()) prob_dist = {k: v / shots for k, v in counts.items()} else: # SamplerV1 prob_dist = result.quasi_dists[0].binary_probabilities(qc.num_qubits) raw_prob_dist = {k: v for k, v in prob_dist.items() if v >= self._MIN_PROBABILITY} prob_dist = {k[::-1]: v for k, v in raw_prob_dist.items()} self._circuit_results = {i: v**0.5 for i, v in raw_prob_dist.items()} return prob_dist @staticmethod def _bin_to_int(v: str, num_value_bits: int) -> int: """Converts a binary string of n bits using two's complement to an integer.""" if v.startswith("1"): int_v = int(v, 2) - 2**num_value_bits else: int_v = int(v, 2) return int_v
[docs] class GroverOptimizationResult(OptimizationResult): """A result object for Grover Optimization methods.""" def __init__( # pylint: disable=too-many-positional-arguments self, x: list[float] | np.ndarray, fval: float, variables: list[Variable], operation_counts: dict[int, dict[str, int]], n_input_qubits: int, n_output_qubits: int, intermediate_fval: float, threshold: float, status: OptimizationResultStatus, samples: list[SolutionSample] | None = None, raw_samples: list[SolutionSample] | None = None, ) -> None: """ Constructs a result object with the specific Grover properties. Args: x: The solution of the problem fval: The value of the objective function of the solution variables: A list of variables defined in the problem operation_counts: The counts of each operation performed per iteration. n_input_qubits: The number of qubits used to represent the input. n_output_qubits: The number of qubits used to represent the output. intermediate_fval: The intermediate value of the objective function of the minimization qubo solution, that is expected to be consistent to ``fval``. threshold: The threshold of Grover algorithm. status: the termination status of the optimization algorithm. samples: the x values, the objective function value of the original problem, the probability, and the status of sampling. raw_samples: the x values of the QUBO, the objective function value of the minimization QUBO, and the probability of sampling. """ super().__init__( x=x, fval=fval, variables=variables, status=status, raw_results=None, samples=samples, ) self._raw_samples = raw_samples self._operation_counts = operation_counts self._n_input_qubits = n_input_qubits self._n_output_qubits = n_output_qubits self._intermediate_fval = intermediate_fval self._threshold = threshold @property def operation_counts(self) -> dict[int, dict[str, int]]: """Get the operation counts. Returns: The counts of each operation performed per iteration. """ return self._operation_counts @property def n_input_qubits(self) -> int: """Getter of n_input_qubits Returns: The number of qubits used to represent the input. """ return self._n_input_qubits @property def n_output_qubits(self) -> int: """Getter of n_output_qubits Returns: The number of qubits used to represent the output. """ return self._n_output_qubits @property def intermediate_fval(self) -> float: """Getter of the intermediate fval Returns: The intermediate value of fval before interpret. """ return self._intermediate_fval @property def threshold(self) -> float: """Getter of the threshold of Grover algorithm. Returns: The threshold of Grover algorithm. """ return self._threshold @property def raw_samples(self) -> list[SolutionSample] | None: """Returns the list of raw solution samples of ``GroverOptimizer``. Returns: The list of raw solution samples of ``GroverOptimizer``. """ return self._raw_samples