Contents Menu Expand Light mode Dark mode Auto light/dark mode
Qiskit Optimization 0.6.1
Qiskit Ecosystem logo
Qiskit Optimization 0.6.1
  • Overview
  • Getting Started
  • Migration Guide
    • Qiskit Optimization v0.5 Migration Guide
    • Qiskit Optimization v0.6 Migration Guide
  • Tutorials
    • Quadratic Programs
    • Converters for Quadratic Programs
    • Minimum Eigen Optimizer
    • Grover Optimizer
    • ADMM Optimizer
    • Max-Cut and Traveling Salesman Problem
    • Vehicle Routing
    • Improving Variational Quantum Optimization using CVaR
    • Application Classes for Optimization Problems
    • Warm-starting quantum optimization
    • Using Classical Optimization Solvers and Models with Qiskit Optimization
    • Quantum Random Access Optimization
  • API Reference
    • QuadraticProgram
    • QiskitOptimizationError
    • INFINITY
    • Optimization algorithms (qiskit_optimization.algorithms)
      • OptimizationAlgorithm
      • MultiStartOptimizer
      • OptimizationResult
      • BaseAggregator
      • ADMMOptimizationResult
      • ADMMOptimizer
      • ADMMParameters
      • ADMMState
      • CobylaOptimizer
      • CplexOptimizer
      • GoemansWilliamsonOptimizer
      • GoemansWilliamsonOptimizationResult
      • GroverOptimizationResult
      • GroverOptimizer
      • GurobiOptimizer
      • IntermediateResult
      • MeanAggregator
      • MinimumEigenOptimizationResult
      • MinimumEigenOptimizer
      • OptimizationResultStatus
      • RecursiveMinimumEigenOptimizationResult
      • RecursiveMinimumEigenOptimizer
      • ScipyMilpOptimizer
      • SlsqpOptimizationResult
      • SlsqpOptimizer
      • SolutionSample
      • WarmStartQAOAOptimizer
      • WarmStartQAOAFactory
      • Quantum Random Access Optimization (qiskit_optimization.algorithms.qrao)
        • EncodingCommutationVerifier
        • QuantumRandomAccessEncoding
        • QuantumRandomAccessOptimizer
        • QuantumRandomAccessOptimizationResult
        • MagicRounding
        • RoundingScheme
        • RoundingContext
        • RoundingResult
        • SemideterministicRounding
    • Optimization applications (qiskit_optimization.applications)
      • OptimizationApplication
      • GraphOptimizationApplication
      • BinPacking
      • Clique
      • ExactCover
      • GraphPartition
      • Knapsack
      • Maxcut
      • NumberPartition
      • SetPacking
      • SKModel
      • StableSet
      • Tsp
      • VehicleRouting
      • VertexCover
    • Optimization converters (qiskit_optimization.converters)
      • QuadraticProgramConverter
      • InequalityToEquality
      • IntegerToBinary
      • LinearEqualityToPenalty
      • LinearInequalityToPenalty
      • MaximizeToMinimize
      • MinimizeToMaximize
      • QuadraticProgramToQubo
    • Optimization problems (qiskit_optimization.problems)
      • Constraint
      • LinearExpression
      • LinearConstraint
      • QuadraticExpression
      • QuadraticConstraint
      • QuadraticObjective
      • QuadraticProgramElement
      • Variable
    • Quadratic program translators (qiskit_optimization.translators)
      • from_docplex_mp
      • to_docplex_mp
      • from_gurobipy
      • to_gurobipy
      • from_ising
      • to_ising
  • Explanations
    • Background on Quantum Random Access Optimization: Quantum relaxations, quantum random access codes, rounding schemes
  • Release Notes
  • GitHub
  • English
  • Japanese
  • Spanish
Back to top



BaseAggregator#

class BaseAggregator[source]#

Bases: ABC

A base abstract class for aggregates results

Methods

abstract aggregate(results)[source]#

Aggregates the results.

Parameters:

results (List[MinimumEigenOptimizationResult]) – List of result objects that need to be combined.

Returns:

Aggregated samples.

Return type:

List[SolutionSample]

Was this page helpful?
Yes No
Thank you!
Next
ADMMOptimizationResult
Previous
OptimizationResult
Copyright © 2018, 2024, Qiskit Optimization Development Team
Made with Sphinx and @pradyunsg's Furo
On this page
  • BaseAggregator
    • BaseAggregator
      • BaseAggregator.aggregate()