MinimumEigenOptimizationResult#
- class MinimumEigenOptimizationResult(x, fval, variables, status, samples=None, min_eigen_solver_result=None, raw_samples=None)[source]#
Bases:
OptimizationResult
Minimum Eigen Optimizer Result.
- Parameters:
x (List[float] | ndarray | None) – the optimal value found by
SamplingMinimumEigensolver
orNumPyMinimumEigensolver
.fval (float | None) – the optimal function value.
variables (List[Variable]) – the list of variables of the optimization problem.
status (OptimizationResultStatus) – the termination status of the optimization algorithm.
min_eigen_solver_result (SamplingMinimumEigensolverResult | NumPyMinimumEigensolverResult | None) – the result obtained from the underlying algorithm.
samples (List[SolutionSample] | None) – the x values, the objective function value of the original problem, the probability, and the status of sampling.
raw_samples (List[SolutionSample] | None) – the x values of the QUBO, the objective function value of the QUBO, and the probability of sampling.
Attributes
- fval#
Returns the objective function value.
- Returns:
The function value corresponding to the objective function value found in the optimization.
- min_eigen_solver_result#
Returns a result object obtained from the instance of
SamplingMinimumEigensolver
orNumPyMinimumEigensolver
.
- raw_results#
Return the original results object from the optimization algorithm.
Currently a dump for any leftovers.
- Returns:
Additional result information of the optimization algorithm.
- raw_samples#
Returns the list of raw solution samples of
SamplingMinimumEigensolver
orNumPyMinimumEigensolver
.- Returns:
The list of raw solution samples of
SamplingMinimumEigensolver
orNumPyMinimumEigensolver
.
- samples#
Returns the list of solution samples
- Returns:
The list of solution samples.
- status#
Returns the termination status of the optimization algorithm.
- Returns:
The termination status of the algorithm.
- variable_names#
Returns the list of variable names of the optimization problem.
- Returns:
The list of variable names of the optimization problem.
- variables#
Returns the list of variables of the optimization problem.
- Returns:
The list of variables.
- variables_dict#
Returns the variable values as a dictionary of the variable name and corresponding value.
- Returns:
The variable values as a dictionary of the variable name and corresponding value.
- x#
Returns the variable values found in the optimization or None in case of FAILURE.
- Returns:
The variable values found in the optimization.
Methods
- get_correlations()#
Get <Zi x Zj> correlation matrix from the samples.
- Returns:
A correlation matrix.
- Return type: