RecursiveMinimumEigenOptimizationResult#
- class RecursiveMinimumEigenOptimizationResult(x, fval, variables, status, replacements, history)[source]#
Bases:
OptimizationResult
Recursive Eigen Optimizer Result.
Constructs an instance of the result class.
- Parameters:
x (List[float] | ndarray) – the optimal value found in the optimization.
fval (float) – the optimal function value.
variables (List[Variable]) – the list of variables of the optimization problem.
status (OptimizationResultStatus) – the termination status of the optimization algorithm.
replacements (Dict[str, Tuple[str, int]]) – a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.
history (Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]) – a tuple containing intermediate results. The first element is a list of
MinimumEigenOptimizerResult
obtained by invokingMinimumEigenOptimizer
iteratively, the second element is an instance ofOptimizationResult
obtained at the last step via min_num_vars_optimizer.
Attributes
- fval#
Returns the objective function value.
- Returns:
The function value corresponding to the objective function value found in the optimization.
- history#
Returns intermediate results. The first element is a list of
MinimumEigenOptimizerResult
obtained by invokingMinimumEigenOptimizer
iteratively, the second element is an instance ofOptimizationResult
obtained at the last step via min_num_vars_optimizer.
- raw_results#
Return the original results object from the optimization algorithm.
Currently a dump for any leftovers.
- Returns:
Additional result information of the optimization algorithm.
- replacements#
Returns a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.
- samples#
Returns the list of solution samples
- Returns:
The list of solution samples.
- status#
Returns the termination status of the optimization algorithm.
- Returns:
The termination status of the algorithm.
- variable_names#
Returns the list of variable names of the optimization problem.
- Returns:
The list of variable names of the optimization problem.
- variables#
Returns the list of variables of the optimization problem.
- Returns:
The list of variables.
- variables_dict#
Returns the variable values as a dictionary of the variable name and corresponding value.
- Returns:
The variable values as a dictionary of the variable name and corresponding value.
- x#
Returns the variable values found in the optimization or None in case of FAILURE.
- Returns:
The variable values found in the optimization.
Methods
- get_correlations()#
Get <Zi x Zj> correlation matrix from the samples.
- Returns:
A correlation matrix.
- Return type: