QuantumRandomAccessOptimizationResult#
- class QuantumRandomAccessOptimizationResult(*, x, fval, variables, status, samples, encoding, relaxed_fval, relaxed_result, rounding_result)[source]#
Bases:
OptimizationResult
Result of Quantum Random Access Optimization procedure.
- Parameters:
x (list[float] | np.ndarray) – The optimal value found by
MinimumEigensolver
.fval (float) – The optimal function value.
variables (list[Variable]) – The list of variables of the optimization problem.
status (OptimizationResultStatus) – The termination status of the optimization algorithm.
samples (list[SolutionSample]) – The list of
SolutionSample
obtained from the optimization algorithm.encoding (QuantumRandomAccessEncoding) – The encoding used for the optimization.
relaxed_fval (float) – The optimal function value of the relaxed problem.
relaxed_result (MinimumEigensolverResult) – The result obtained from the underlying minimum eigensolver.
rounding_result (RoundingResult) – The rounding result.
Attributes
- encoding#
The encoding used for the optimization.
- fval#
Returns the objective function value.
- Returns:
The function value corresponding to the objective function value found in the optimization.
- raw_results#
Return the original results object from the optimization algorithm.
Currently a dump for any leftovers.
- Returns:
Additional result information of the optimization algorithm.
- relaxed_fval#
The optimal function value of the relaxed problem.
- relaxed_result#
The result obtained from the underlying minimum eigensolver.
- rounding_result#
The rounding result.
- samples#
Returns the list of solution samples
- Returns:
The list of solution samples.
- status#
Returns the termination status of the optimization algorithm.
- Returns:
The termination status of the algorithm.
- variable_names#
Returns the list of variable names of the optimization problem.
- Returns:
The list of variable names of the optimization problem.
- variables#
Returns the list of variables of the optimization problem.
- Returns:
The list of variables.
- variables_dict#
Returns the variable values as a dictionary of the variable name and corresponding value.
- Returns:
The variable values as a dictionary of the variable name and corresponding value.
- x#
Returns the variable values found in the optimization or None in case of FAILURE.
- Returns:
The variable values found in the optimization.
Methods
- get_correlations()#
Get <Zi x Zj> correlation matrix from the samples.
- Returns:
A correlation matrix.
- Return type: