# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The QNN circuit."""
from __future__ import annotations
from typing import List
from qiskit.circuit import QuantumRegister, QuantumCircuit
from qiskit.circuit.parametertable import ParameterView
from qiskit.circuit.library import BlueprintCircuit
from qiskit_machine_learning.utils import derive_num_qubits_feature_map_ansatz
from qiskit_machine_learning import QiskitMachineLearningError
[documentos]class QNNCircuit(BlueprintCircuit):
"""
The QNN circuit is a blueprint circuit that wraps feature map and ansatz circuits.
It can be used to simplify the composition of these two.
If only the number of qubits is provided the :class:`~qiskit.circuit.library.RealAmplitudes`
ansatz and the :class:`~qiskit.circuit.library.ZZFeatureMap` feature map are used. If the
number of qubits is 1 the :class:`~qiskit.circuit.library.ZFeatureMap` is used. If only a
feature map is provided, the :class:`~qiskit.circuit.library.RealAmplitudes` ansatz with the
corresponding number of qubits is used. If only an ansatz is provided the
:class:`~qiskit.circuit.library.ZZFeatureMap` with the corresponding number of qubits is used.
At least one parameter has to be provided. If a feature map and an ansatz is provided, the
number of qubits must be the same.
In case number of qubits is provided along with either a feature map, an ansatz or both, a
potential mismatch between the three inputs with respect to the number of qubits is resolved by
constructing the :class:`~qiskit_machine_learning.circuit.library.QNNCircuit` with the given
number of qubits. If one of the :class:`~qiskit_machine_learning.circuit.library.QNNCircuit`
properties is set after the class construction, the circuit is adjusted to incorporate the
changes. This means, a new valid configuration that considers the latest property update will be
derived. This ensures that the classes properties are consistent at all times.
Example:
.. code-block:: python
from qiskit_machine_learning.circuit.library import QNNCircuit
qnn_qc = QNNCircuit(2)
print(qnn_qc)
# prints:
# ┌──────────────────────────┐»
# q_0: ┤0 ├»
# │ ZZFeatureMap(x[0],x[1]) │»
# q_1: ┤1 ├»
# └──────────────────────────┘»
# « ┌──────────────────────────────────────────────────────────┐
# «q_0: ┤0 ├
# « │ RealAmplitudes(θ[0],θ[1],θ[2],θ[3],θ[4],θ[5],θ[6],θ[7]) │
# «q_1: ┤1 ├
# « └──────────────────────────────────────────────────────────┘
print(qnn_qc.num_qubits)
# prints: 2
print(qnn_qc.input_parameters)
# prints: ParameterView([ParameterVectorElement(x[0]), ParameterVectorElement(x[1])])
print(qnn_qc.weight_parameters)
# prints: ParameterView([ParameterVectorElement(θ[0]), ParameterVectorElement(θ[1]),
# ParameterVectorElement(θ[2]), ParameterVectorElement(θ[3]),
# ParameterVectorElement(θ[4]), ParameterVectorElement(θ[5]),
# ParameterVectorElement(θ[6]), ParameterVectorElement(θ[7])])
"""
def __init__(
self,
num_qubits: int | None = None,
feature_map: QuantumCircuit | None = None,
ansatz: QuantumCircuit | None = None,
) -> None:
"""
Although all parameters default to None at least one parameter must be provided, to determine
the number of qubits from it, when the instance is created.
If more than one parameter is passed:
1) If num_qubits is provided the feature map and/or ansatz supplied will be overridden to
circuits with num_qubits, as long as the respective circuit supports updating its number of
qubits.
2) If num_qubits is not provided the feature_map and ansatz must be set to the same number
of qubits.
Args:
num_qubits: Number of qubits, a positive integer. Optional if feature_map or ansatz is
provided, otherwise required. If not provided num_qubits defaults from the
sizes of feature_map and ansatz.
feature_map: A feature map. Optional if num_qubits or ansatz is provided, otherwise
required. If not provided defaults to
:class:`~qiskit.circuit.library.ZZFeatureMap` or
:class:`~qiskit.circuit.library.ZFeatureMap` if num_qubits is determined
to be 1.
ansatz: An ansatz. Optional if num_qubits or feature_map is provided, otherwise
required. If not provided defaults to
:class:`~qiskit.circuit.library.RealAmplitudes`.
Returns:
The composed feature map and ansatz circuit.
Raises:
QiskitMachineLearningError: If a valid number of qubits cannot be derived from the \
provided input arguments.
"""
super().__init__()
self._feature_map = feature_map
self._ansatz = ansatz
# Check if circuit is constructed with valid configuration and set properties accordingly.
self.num_qubits, self._feature_map, self._ansatz = derive_num_qubits_feature_map_ansatz(
num_qubits, feature_map, ansatz
)
def _build(self):
super()._build()
self.compose(self.feature_map, inplace=True)
self.compose(self.ansatz, inplace=True)
def _check_configuration(self, raise_on_failure=True):
try:
self.num_qubits, self.feature_map, self.ansatz = derive_num_qubits_feature_map_ansatz(
self.num_qubits, self.feature_map, self.ansatz
)
except QiskitMachineLearningError as qml_ex:
if raise_on_failure:
raise qml_ex
@property
def num_qubits(self) -> int:
"""Returns the number of qubits in this circuit.
Returns:
The number of qubits.
"""
return super().num_qubits
@num_qubits.setter
def num_qubits(self, num_qubits: int) -> None:
"""Set the number of qubits. If num_qubits is set
the feature map and ansatz are adjusted to circuits with num_qubits qubits.
Args:
num_qubits: The number of qubits, a positive integer.
"""
if self.num_qubits != num_qubits:
# invalidate the circuit
self._invalidate()
self.qregs: List[QuantumRegister] = []
if num_qubits is not None and num_qubits > 0:
self.qregs = [QuantumRegister(num_qubits, name="q")]
(
self.num_qubits,
self._feature_map,
self._ansatz,
) = derive_num_qubits_feature_map_ansatz(
num_qubits, self._feature_map, self._ansatz
)
@property
def feature_map(self) -> QuantumCircuit:
"""Returns feature_map.
Returns:
The feature map.
"""
return self._feature_map
@feature_map.setter
def feature_map(self, feature_map: QuantumCircuit) -> None:
"""Set the feature map. If the feature map is updated the ``QNNCircuit`` is adjusted
according to the feature map being passed. This includes:
1) The num_qubits is adjusted to the feature map number of qubits.
2) The ansatz is adjusted to a circuit with the feature_map number of qubits.
Args:
feature_map: The feature map.
"""
if self.feature_map != feature_map:
# invalidate the circuit
self._invalidate()
self.num_qubits = feature_map.num_qubits
self.num_qubits, self._feature_map, self._ansatz = derive_num_qubits_feature_map_ansatz(
self.num_qubits, feature_map, self.ansatz
)
@property
def ansatz(self) -> QuantumCircuit:
"""Returns ansatz.
Returns:
The ansatz.
"""
return self._ansatz
@ansatz.setter
def ansatz(self, ansatz: QuantumCircuit) -> None:
"""Set the ansatz. If the ansatz is updated the ``QNNCircuit`` is adapted
according to the ansatz being passed. This includes:
1) The num_qubits is adjusted to the ansatz number of qubits.
2) The feature_map is adjusted to a circuit with the ansatz number of qubits.
Args:
ansatz: The ansatz.
"""
if self.ansatz != ansatz:
# invalidate the circuit
self._invalidate()
self.num_qubits = ansatz.num_qubits
self.num_qubits, self._feature_map, self._ansatz = derive_num_qubits_feature_map_ansatz(
self.num_qubits, self.feature_map, ansatz
)
@property
def input_parameters(self) -> ParameterView:
"""Returns the parameters of the feature map.
Returns:
The parameters of the feature map.
"""
return self._feature_map.parameters
@property
def num_input_parameters(self) -> int:
"""Returns the number of input parameters in the circuit.
Returns:
The number of input parameters.
"""
return len(self._feature_map.parameters)
@property
def weight_parameters(self) -> ParameterView:
"""Returns the parameters of the ansatz. These corresponding to the trainable weights.
Returns:
The parameters of the ansatz.
"""
return self._ansatz.parameters
@property
def num_weight_parameters(self) -> int:
"""Returns the number of weights in the circuit.
Returns:
The number of weights.
"""
return len(self._ansatz.parameters)