Code source de qiskit_machine_learning.kernels.trainable_kernel

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Trainable Quantum Kernel"""

from __future__ import annotations

from abc import ABC
from typing import Mapping, Sequence

import numpy as np
from qiskit.circuit import Parameter, ParameterVector
from qiskit.circuit.parameterexpression import ParameterValueType

from .base_kernel import BaseKernel
from ..exceptions import QiskitMachineLearningError


[docs]class TrainableKernel(BaseKernel, ABC): """An abstract definition of the ability to train kernel via specifying training parameters.""" def __init__( self, *, training_parameters: ParameterVector | Sequence[Parameter] | None = None, **kwargs ) -> None: """ Args: training_parameters: a sequence of training parameters. **kwargs: Additional parameters may be used by the super class. """ super().__init__(**kwargs) if training_parameters is None: training_parameters = [] self._training_parameters = training_parameters self._num_training_parameters = len(self._training_parameters) self._parameter_dict = {parameter: None for parameter in training_parameters} self._feature_parameters: Sequence[Parameter] = []
[docs] def assign_training_parameters( self, parameter_values: Mapping[Parameter, ParameterValueType] | Sequence[ParameterValueType], ) -> None: """ Fix the training parameters to numerical values. """ if not isinstance(parameter_values, dict): if len(parameter_values) != self._num_training_parameters: raise ValueError( f"The number of given parameters is wrong: {len(parameter_values)}, " f"expected {self._num_training_parameters}." ) self._parameter_dict.update( { parameter: parameter_values[i] for i, parameter in enumerate(self._training_parameters) } ) else: for key in parameter_values: if key not in self._training_parameters: raise ValueError( f"Parameter {key} is not a trainable parameter of the feature map and " f"thus cannot be bound. Make sure {key} is provided in the the trainable " "parameters when initializing the kernel." ) self._parameter_dict[key] = parameter_values[key]
@property def parameter_values(self) -> np.ndarray: """ Returns numerical values assigned to the training parameters as a numpy array. """ return np.asarray([self._parameter_dict[param] for param in self._training_parameters]) @property def training_parameters(self) -> ParameterVector | Sequence[Parameter]: """ Returns the vector of training parameters. """ return self._training_parameters @property def num_training_parameters(self) -> int: """ Returns the number of training parameters. """ return len(self._training_parameters) def _parameter_array(self, x_vec: np.ndarray) -> np.ndarray: """ Combines the feature values and the trainable parameters into one array. """ self._check_trainable_parameters() full_array = np.zeros((x_vec.shape[0], self._num_features + self._num_training_parameters)) for i, x in enumerate(x_vec): self._parameter_dict.update( {feature_param: x[j] for j, feature_param in enumerate(self._feature_parameters)} ) full_array[i, :] = list(self._parameter_dict.values()) return full_array def _check_trainable_parameters(self) -> None: for param in self._training_parameters: if self._parameter_dict[param] is None: raise QiskitMachineLearningError( f"Trainable parameter {param} has not been bound. Make sure to bind all" "trainable parameters to numerical values using `.assign_training_parameters()`" "before calling `.evaluate()`." )