Source code for qiskit_qec.operators.base_pauli

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

# Part of the QEC framework
"""Module for base pauli"""

import copy
import numbers
from typing import List, Optional, Union

import numpy as np

# Must be imported as follows to avoid circular import errors
from qiskit import QiskitError
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.barrier import Barrier
from qiskit.circuit.delay import Delay
from qiskit.circuit.instruction import Instruction
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.mixins import AdjointMixin, MultiplyMixin

from qiskit_qec.linear import matrix as mt
from qiskit_qec.linear.symplectic import symplectic_product
from qiskit_qec.utils import pauli_rep


# pylint: disable=no-member
[docs] class BasePauli(BaseOperator, AdjointMixin, MultiplyMixin): r"""Base class for Pauli and PauliList. Symplectic representation of a list of N-qubit Paulis with phases using numpy arrays for symplectic matrices and phase vectors. """ # External string formats used when displaying Pauli's as strings EXTERNAL_TENSOR_ENCODING = pauli_rep.DEFAULT_EXTERNAL_TENSOR_ENCODING EXTERNAL_PHASE_ENCODING = pauli_rep.DEFAULT_EXTERNAL_PHASE_ENCODING EXTERNAL_PAULI_ENCODING = EXTERNAL_PHASE_ENCODING + EXTERNAL_TENSOR_ENCODING EXTERNAL_SYNTAX = pauli_rep.PRODUCT_SYNTAX EXTERNAL_QUBIT_ORDER = pauli_rep.DEFAULT_QUBIT_ORDER PRINT_PHASE_ENCODING = None def __init__( self, matrix: Union[np.ndarray, None] = None, phase_exp: Union[None, np.ndarray, np.integer] = None, order: str = "xz", ) -> None: """Init method for BasePauli A BasePauli object represents a list N-qubit Pauli operators with phases. Numpy arrays are used to represent the symplectic matrix represention of these Paulis. The phases of the Paulis are stored encoded. The phases of the Pauli operators are internally encoded in the '-iZX' Pauli encoding (See the pauli_rep module for more details). That is a Pauli operator is represented as symplectic vector V and a phase exponent phase_exp such that:: (-i)^phase_exp Z^z X^x where V = [x, z] and phase_exp is a vector of Z_4 elements (0,1,2,3). A list of Pauli operators is represented as a symplectic matrix S and a phase exponent vector phase_exp such that the rows or S are the symplectic vector representations of the Paulis and the phase_exp vector store the phase exponent of each associated Pauli Operator. Args: matrix: Input GF(2) symplectic matrix phase_exp (optional): Phase exponent vector for imput matrix. A value of None will result in an a complex coefficients of 1 for each Pauli operator. Defaults to None. order: Set to 'xz' or 'zx'. Defines which side the x and z parts of the input matrix Raises: QiskitError: matrix and phase_exp sizes are not compatible Examples: >>> matrix = numpy.array([[1,1,0,0],[0,1,0,1]]) >>> base_pauli = BasePauli(matrix) See Also: Pauli, PauliList """ if matrix is None or matrix.size == 0: matrix = np.empty(shape=(0, 0), dtype=np.bool_) phase_exp = np.empty(shape=(0,), dtype=np.int8) matrix = np.atleast_2d(matrix) num_qubits = matrix.shape[1] >> 1 if order == "zx": nmatrix = np.empty(shape=matrix.shape, dtype=matrix.dtype) nmatrix[:, :num_qubits] = matrix[:, num_qubits:] nmatrix[:, num_qubits:] = matrix[:, :num_qubits] matrix = nmatrix self.matrix = matrix self._num_paulis = self.matrix.shape[0] if phase_exp is None: self._phase_exp = np.zeros(shape=(self.matrix.shape[0],), dtype=np.int8) else: self._phase_exp = np.atleast_1d(phase_exp) if self._phase_exp.shape[0] != self.matrix.shape[0]: raise QiskitError("matrix and phase_exp sizes are not compatible") super().__init__(num_qubits=num_qubits) # --------------------------------------------------------------------- # Properties # --------------------------------------------------------------------- @property def x(self): """Returns the X part of symplectic representation as a 2d matrix. Note: The Pauli class over writes this method to return a 1d array instead of a 2d array. Use the self._x method if a 2d array is needed as _x method is markeded as @final Examples: >>> matrix = numpy.array([[1,0,0,0],[0,1,1,1]], dtype=numpy.bool_) >>> phase_exp = numpy.array([0,1]) >>> base_pauli = BasePauli(matrix, phase_exp) >>> base_pauli.x.astype(int) array([[1, 0], [0, 1]]) See Also: _x, z, _z """ return self.matrix[:, : self.num_qubits] @x.setter def x(self, val: np.ndarray): """Sets the X part of symplectic representation Args: val: GF(2) matrix used to set the X part of the symplectic representation Examples: >>> matrix = numpy.array([[1,0,0,0],[0,1,1,1]], dtype=numpy.bool_) >>> phase_exp = numpy.array([0,1]) >>> base_pauli = BasePauli(matrix, phase_exp) >>> base_pauli.x = numpy.array([[1,1],[0,0]], dtype=numpy.bool_) >>> base_pauli.x.astype(int) array([[1, 1], [0, 0]]) See Also: x, z, _z """ self.matrix[:, : self.num_qubits] = val # @final Add when python >= 3.8 @property def _x(self): # pylint: disable=invalid-name """Returns the X part of symplectic representation as a 2d matrix. Note: The Pauli class over writes this method to return a 1d array instead of a 2d array. Use the self._x method if a 2d array is needed as _x method is markeded as @final Examples: >>> matrix = numpy.array([[1,0,0,0],[0,1,1,1]], dtype=numpy.bool_) >>> phase_exp = numpy.array([0,1]) >>> base_pauli = BasePauli(matrix, phase_exp) >>> base_pauli._x.astype(int) array([[1, 0], [0, 1]]) See Also: x, z, _z """ return self.matrix[:, : self.num_qubits] # @final Add when python >= 3.8 @_x.setter def _x(self, val): # pylint: disable=invalid-name self.matrix[:, : self.num_qubits] = val @property def z(self): """The z array for the symplectic representation.""" return self.matrix[:, self.num_qubits :] @z.setter def z(self, val): self.matrix[:, self.num_qubits :] = val # @final Add when python >= 3.8 @property def _z(self): # pylint: disable=invalid-name """The z array for the symplectic representation.""" return self.matrix[:, self.num_qubits :] # @final Add when python >= 3.8 @_z.setter def _z(self, val): # pylint: disable=invalid-name self.matrix[:, self.num_qubits :] = val @property def num_y(self): """Return the number of Y for each operator""" return np.sum(np.logical_and(self.x, self.z), axis=1) @property def tensor_encoding(self): """Return the external symplectic matrix encoding""" return BasePauli.EXTERNAL_TENSOR_ENCODING
[docs] @classmethod def set_tensor_encoding(cls, encoding: str = pauli_rep.DEFAULT_EXTERNAL_TENSOR_ENCODING): """Set the external symplectic matrix format Args: encoding (optional): Symplectic matrix tensor encoding. Defaults to pauli_rep.DEFAULT_EXTERNAL_TENSOR_ENCODING. """ assert encoding in pauli_rep.get_tensor_encodings(), QiskitError( f"Invalid symplectic matrix encoding: {encoding}. Must be one \ of {pauli_rep.get_tensor_encodings()}" ) BasePauli.EXTERNAL_TENSOR_ENCODING = encoding
@property def phase_encoding(self): """Return the phase encoding""" return BasePauli.EXTERNAL_PHASE_ENCODING
[docs] @classmethod def set_phase_encoding(cls, encoding: str = pauli_rep.DEFAULT_EXTERNAL_PHASE_ENCODING): """Set the phase encoding Args: encoding (optional): phase encoding. Defaults to pauli_rep.DEFAULT_EXTERNAL_PHASE_ENCODING. """ assert encoding in pauli_rep.get_phase_encodings(), QiskitError( f"Invalid phase encoding: {encoding}. Must be one of {pauli_rep.get_phase_encodings()}" ) BasePauli.EXTERNAL_PHASE_ENCODING = encoding
@property def pauli_encoding(self): """Pauli format.""" return BasePauli.EXTERNAL_PAULI_ENCODING
[docs] @classmethod def set_pauli_encoding(cls, encoding: str = pauli_rep.DEFAULT_EXTERNAL_PAULI_ENCODING): """Set the Pauli encoding Args: encoding (optional): Pauli encoding. Defaults to pauli_rep.DEFAULT_EXTERNAL_PAULI_REP_FORMAT. """ assert encoding in pauli_rep.get_pauli_encodings(), QiskitError( f"Invalid pauli encoding: {encoding}. Must be one of {pauli_rep.get_pauli_encodings()}" ) phase_encoding, tensor_encoding = pauli_rep._split_pauli_enc(encoding) BasePauli.EXTERNAL_PHASE_ENCODING = phase_encoding BasePauli.EXTERNAL_TENSOR_ENCODING = tensor_encoding BasePauli.EXTERNAL_PAULI_ENCODING = phase_encoding + tensor_encoding
@property def syntax(self): """Returns the syntax""" return BasePauli.EXTERNAL_SYNTAX
[docs] @classmethod def set_syntax(cls, syntax_code: Optional[int] = None, syntax_str: Optional[str] = "Product"): """Sets the global input and output format Args: syntax_code (Optional[int], optional): sets the syntax of Pauli tensors. Possible inputs are 0 for product syntax, 1 for index syntax and 2 for latex syntax. Defaults to None. syntax_str (Optional[str], optional): sets the syntax of Pauli tensors. Possible inputs are Product or Latex, if another input is given the syntax is set to Order. Defaults to "Product". Raises: QiskitError: Unknown syntax: {syntax_code}. See pauli_rep for options. """ if syntax_code is None: if syntax_str == "Product": BasePauli.EXTERNAL_SYNTAX = pauli_rep.PRODUCT_SYNTAX elif syntax_str == "Latex": BasePauli.EXTERNAL_SYNTAX = pauli_rep.LATEX_SYNTAX else: BasePauli.EXTERNAL_SYNTAX = pauli_rep.INDEX_SYNTAX else: if syntax_code not in [0, 1, 2]: raise QiskitError("Unknown syntax: {syntax_code}. See pauli_rep for options.") BasePauli.EXTERNAL_SYNTAX = syntax_code
@property def print_phase_encoding(self): """Prints how the phase will be displayed in when printing.""" return BasePauli.PRINT_PHASE_ENCODING
[docs] @classmethod def set_print_phase_encoding(cls, phase_encoding: Optional[str] = None): """_summary_ Args: phase_encoding (Optional[str], optional): _description_. Defaults to None. Raises: QiskitError: _description_ """ if phase_encoding is None or phase_encoding in pauli_rep.PHASE_ENCODINGS: BasePauli.PRINT_PHASE_ENCODING = phase_encoding else: raise QiskitError( f"Unknown print phase encoding {phase_encoding}. Encoding \ must be None or one of {pauli_rep.get_phase_encodings}" )
@property def qubit_order(self): """Get external qubit order""" return BasePauli.EXTERNAL_QUBIT_ORDER
[docs] @classmethod def set_qubit_order(cls, qubit_order: Optional[str] = None): """Set external qubit order Args: qubit_order (Optional[str], optional): _description_. Defaults to None. Raises: QiskitError: _description_ """ if qubit_order is None: BasePauli.EXTERNAL_QUBIT_ORDER = pauli_rep.DEFAULT_QUBIT_ORDER else: if qubit_order not in pauli_rep.QUBIT_ORDERS: raise QiskitError(f"Unknown qubit order: {qubit_order}") BasePauli.EXTERNAL_QUBIT_ORDER = qubit_order
# --------------------------------------------------------------------- # Magic Methods # --------------------------------------------------------------------- def __imul__(self, other: "BasePauli") -> "BasePauli": return self.compose(other, front=True, inplace=True) def __neg__(self) -> "BasePauli": ret = copy.copy(self) ret._phase_exp = np.mod(self._phase_exp + 2, 4) return ret # ---------------------------------------------------------------------
[docs] def copy(self) -> "BasePauli": """Make a deep copy of current operator.""" # Deepcopy has terrible performance on objects with Numpy arrays # attributes so we make a shallow copy and then manually copy the # Numpy arrays to efficiently mimic a deepcopy ret = copy.copy(self) ret.matrix = self.matrix.copy() ret._phase_exp = self._phase_exp.copy() return ret
# --------------------------------------------------------------------- # BaseOperator methods # --------------------------------------------------------------------- # Needed by GroupMixin class from BaseOperator class # pylint: disable=arguments-differ
[docs] def compose( self, other: "BasePauli", qargs: Optional[list] = None, front: bool = False, inplace: bool = False, ) -> "BasePauli": r"""Return the composition of Paulis lists To be consistent with other compose functions in Qiskit, composition is defined via left multiplication. That is A.compose(B) = B.A = B.dot(A) = A.compose(B, front=False) where . is the Pauli group multiplication and so B is applied after A. Likewise A.compose(B, front=True) = A.B = A.dot(B) That is B is applied first or at the front. This compose is: [A_1,A_2,...,A_k].compose([B_1,B_2,...,B_k]) = [A_1.compose(B_1),...,A_k.compose(B_k)] or [A].compose([B_1,B_2,...,B_k])) = [A.compose(B_1),...,A.compose(B_k)] Note: This method does compose coordinate wise (which is different from the PauliTable compose which should be corrected at some point). Args: other: BasePauli front (bool): (default: False) qargs (list or None): Optional, qubits to apply compose on on (default: None->All). inplace (bool): If True update in-place (default: False). Returns: BasePauli : Compositon of self and other Raises: QiskitError: if number of qubits of other does not match qargs. """ # Validation if qargs is None and other.num_qubits != self.num_qubits: raise QiskitError(f"other {type(self).__name__} must be on the same number of qubits.") if qargs and other.num_qubits != len(qargs): raise QiskitError( f"Number of qubits of the other {type(self).__name__} does not match qargs." ) if other._num_paulis not in [1, self._num_paulis]: raise QiskitError( "Incompatible BasePaulis. Second list must " "either have 1 or the same number of Paulis." ) return self._compose(self, other, qargs=qargs, front=front, inplace=inplace)
@staticmethod def _compose( a: "BasePauli", b: "BasePauli", qargs: Optional[list] = None, front: bool = False, inplace: bool = False, ) -> "BasePauli": """Returns the composition of two BasePauli objects. Args: a : BasePauli object b : BasePauli object qargs (Optional[list], optional): _description_. Defaults to None. front (bool, optional): _description_. Defaults to False. inplace (bool, optional): _description_. Defaults to False. Returns: BasePauli: _description_ """ if qargs is not None: qargs = list(qargs) + [item + a.num_qubits for item in qargs] amat = a.matrix[:, qargs] else: amat = a.matrix bmat = b.matrix # Calculate the symplectic matrix for the composition mat = np.logical_xor(amat, bmat) # Calculate the phase of the composition phase_exp = a._phase_exp + b._phase_exp if front: phase_exp += 2 * np.sum( np.logical_and(amat[:, : b.num_qubits], bmat[:, b.num_qubits :]), axis=1 ) else: phase_exp += 2 * np.sum( np.logical_and(bmat[:, : b.num_qubits], amat[:, b.num_qubits :]), axis=1 ) phase_exp = np.mod(phase_exp, 4) if qargs is None: if not inplace: return BasePauli(mat, phase_exp) # Inplace update a.matrix = mat a._phase_exp = phase_exp return a # Qargs update ret = a if inplace else a.copy() ret.matrix[:, qargs] = mat ret._phase_exp = np.mod(phase_exp, 4) return ret # ---------------------------------------------------------------------
[docs] def tensor(self, other): return self._tensor(self, other)
@staticmethod def _tensor(a: "BasePauli", b: "BasePauli"): """Returns the generalized tensor product of Paulis that are represented by symplectic matrice and a phase exponent Args: a (BasePauli): List of Pauli operators b (BasePauli): List of Pauli operators if a=[A_1,A_2,...,A_k] and b=[B_1,B_2,...,B_v] then a tensor b = [A_1 tensor B_1, A_1 tensor B_2, ..., A_k tensor B_v] Returns: [PaulisBase]: a gtensor b """ x1 = mt.istack(a.x, b._num_paulis, True) x2 = mt.istack(b.x, a._num_paulis, False) z1 = mt.istack(a.z, b._num_paulis, True) z2 = mt.istack(b.z, a._num_paulis, False) phase1_exp = ( np.vstack(b._num_paulis * [a._phase_exp]) .transpose(1, 0) .reshape(a._num_paulis * b._num_paulis) ) phase2_exp = mt.istack(b._phase_exp, a._num_paulis) xz_mat = np.hstack((x2, x1, z2, z1)) phase_exp = np.mod(phase1_exp + phase2_exp, 4) return BasePauli(xz_mat, phase_exp) # ---------------------------------------------------------------------
[docs] def expand(self, other): return self._tensor(other, self)
# --------------------------------------------------------------------- # Needed by MultiplyMixin class # --------------------------------------------------------------------- def _multiply(self, phase, roundit=True) -> "BasePauli": # pylint: disable=arguments-renamed """Return the {cls} phase * self where phase is in ``[1, -1j, -1, 1j]``. Args: phase (complex): a complex number(s) in ``[1, -1j, -1, 1j]``. roundit (bool): Set True to round components of other. Default=True Returns: {cls}: the {cls} phase * self. Raises: QiskitError: if the phase is not in the set ``[1, -1j, -1, 1j]``. """.format( cls=type(self).__name__ ) phase_exp = pauli_rep.cpx2exp( phase, output_encoding=pauli_rep.INTERNAL_PHASE_ENCODING, roundit=roundit ) return BasePauli(self.matrix, np.mod(self._phase_exp + phase_exp, 4)) # Needed by AdjointMixin class
[docs] def conjugate(self, inplace=False) -> "BasePauli": """Return the conjugate of each Pauli in the list. Args: inplace (boolean) : If True will modify inplace. Default: False, Returns: {cls} : a new {cls} which has phases conjugates (if replace=False) or will change the phase of the clasing instance if replace=True """ new_phase_exp = pauli_rep.exp2exp(self._phase_exp, output_encoding="i") if not inplace: return BasePauli(self.matrix, new_phase_exp).copy() elif new_phase_exp == self._phase_exp: return self else: self._phase_exp = new_phase_exp return self
[docs] def transpose(self, inplace: bool = False) -> "BasePauli": """Return the transpose of each Pauli in the list.""" new_phase_exp = np.mod(self._phase_exp + 2 * (self.num_y % 2), 4) if not inplace: return BasePauli(self.matrix, new_phase_exp).copy() elif new_phase_exp == self._phase_exp: return self else: self._phase_exp = new_phase_exp return self
[docs] def commutes(self, other: "BasePauli", qargs: List = None) -> np.ndarray: """Return True if Pauli that commutes with other. Args: other (PaulisBase): another PaulisBase operator. qargs (list): qubits to apply dot product on (default: None). Returns: np.array: Boolean array of True if Pauli's commute, False if they anti-commute. Raises: QiskitError: if number of qubits of other does not match qargs. """ if qargs is not None and len(qargs) != other.num_qubits: raise QiskitError( f"Number of qubits of other Pauli does not match number of \ qargs ({other.num_qubits} != {len(qargs)})." ) if qargs is None and self.num_qubits != other.num_qubits: raise QiskitError( "Number of qubits of other Pauli does not match the current \ Pauli ({other.num_qubits} != {self.num_qubits})." ) return self._commutes(other, qargs=qargs)
def _commutes(self, other: "BasePauli", qargs: List = None) -> np.ndarray: if qargs is not None: inds = list(qargs) sinds = [index + self.num_qubits for index in inds] # x1, z1 = self.x[:, inds], self.z[:, inds] x1, z1 = self.matrix[:, inds], self.matrix[:, sinds] else: # x1, z1 = self.x, self.z x1, z1 = self.matrix[:, : self.num_qubits], self.matrix[:, self.num_qubits :] return np.logical_not(np.sum((x1 & other.z) ^ (z1 & other.x), axis=1) % 2) # --------------------------------------------------------------------- # Extra all_commutes method # ---------------------------------------------------------------------
[docs] def all_commutes(self, other: "BasePauli") -> np.ndarray: """_summary_ Args: other (BasePauli): _description_ Returns: np.ndarray: _description_ """ return np.logical_not(symplectic_product(self.matrix, other.matrix))
# --------------------------------------------------------------------- # Evolve Methods # ---------------------------------------------------------------------
[docs] def evolve(self, other: "BasePauli", qargs: Union[None, List, int] = None, frame: str = "h"): r"""Heisenberg picture evolution of a Pauli by a Clifford. This returns the Pauli :math:`P^\prime = C^\dagger.P.C`. By choosing the parameter frame='s', this function returns the Schrödinger evolution of the Pauli :math:`P^\prime = C.P.C^\dagger`. This option yields a faster calculation. Args: other (BasePauli or QuantumCircuit): The Clifford circuit to evolve by. qargs (list): a list of qubits to apply the Clifford to. frame (string): 'h' for Heisenberg or 's' for Schrödinger framework. Returns: BasePauli: the Pauli :math:`C^\dagger.P.C`. Raises: QiskitError: if the Clifford number of qubits and qargs don't match. """ # Check dimension if qargs is not None and len(qargs) != other.num_qubits: raise QiskitError( f"Incorrect number of qubits for Clifford circuit \ ({other.num_qubits} != {len(qargs)})." ) if qargs is None and self.num_qubits != other.num_qubits: raise QiskitError( f"Incorrect number of qubits for Clifford circuit \ ({other.num_qubits} != {self.num_qubits})." ) # Evolve via Pauli if isinstance(other, BasePauli): if frame == "s": ret = self.compose(other, qargs=qargs) ret = ret.compose(other.adjoint(), front=True, qargs=qargs) else: ret = self.compose(other.adjoint(), qargs=qargs) ret = ret.compose(other, front=True, qargs=qargs) return ret # Evolve by the inverse circuit to compute C^dg.P.C if frame == "s": return self.copy()._append_circuit(other, qargs=qargs) return self.copy()._append_circuit(other.inverse(), qargs=qargs)
# --------------------------------------------------------------------- # Helper Metods # --------------------------------------------------------------------- def _eq(self, other): """Entrywise comparison of Pauli equality.""" return ( self.num_qubits == other.num_qubits and np.all(np.mod(self._phase_exp, 4) == np.mod(other._phase_exp, 4)) and np.all(self.matrix == other.matrix) ) # --------------------------------------------------------------------- # Class methods for creating labels -> Uses pauli_rep suite of methods # ---------------------------------------------------------------------
[docs] def to_label( self, output_pauli_encoding: Optional[str] = None, no_phase: bool = False, return_phase: bool = False, syntax: Optional[int] = None, qubit_order: Optional[str] = None, index_start: int = 0, squeeze: bool = True, index_str: str = "", ) -> Union[str, List[str]]: """Returns the string representatiojn for a Pauli or Paulis. Args: output_pauli_encoding (optional): Encoding used to represent phases. A value of None will result in complex phases notation. Defaults to None which will in turn use BasePauli.EXTERNAL_PAULI_ENCODING. no_phase (optional): When set to True, no phase will appear no matter what encoding is selected. So the symplectic matrix [1, 1] will produce the operator Y in 'XZY' encoding but also (XZ) in the 'XZ' encoding which are different operators if phases are considered. Defaults to False. return_phase (optional): If True return the adjusted phase for the coefficient of the returned Pauli label. This can be used even if ``full_group=False``. syntax (optional): Syntax of pauli tensor. Values are PRODUCT_SYNTAX = 0 and INDEX_SYNTAX=1. Defaults to INDEX_SYNTAX. qubit_order (optional): Order in which qubits are read. options aree "right-to-left" and "left-to-right". Defaults to "right-to-left". index_start (optional): Lowest value for index in index syntax tensors. Defaults to 0 squeeze (optional): Squeezes the list of reults to a scalar if the number of Paulis is one. Defaults to True. index_str (optional): String that get inserted between operator and numbers in index format. Default is "". Returns: str: the Pauli label(string) from the full Pauli group (if ``no_phase=False``) or from the unsigned Pauli group (if ``no_phase=True``). Tuple[str or List[str], Any or List[Any]]: if ``return_phase=True`` returns a tuple of the Pauli label (from either the full or unsigned Pauli group) and the phase ``q`` for the coefficient :math:`(-i)^(q + x.z)` for the label from the full Pauli group. """ if output_pauli_encoding is None: output_phase_encoding = BasePauli.PRINT_PHASE_ENCODING output_tensor_encoding = BasePauli.EXTERNAL_TENSOR_ENCODING else: output_phase_encoding, output_tensor_encoding = pauli_rep.split_pauli_enc( output_pauli_encoding ) if syntax is None: syntax = BasePauli.EXTERNAL_SYNTAX if qubit_order is None: qubit_order = BasePauli.EXTERNAL_QUBIT_ORDER pauli_str = pauli_rep.symplectic2str( self.matrix, self._phase_exp, output_phase_encoding=output_phase_encoding, no_phase=no_phase, output_tensor_encoding=output_tensor_encoding, syntax=syntax, qubit_order=qubit_order, index_start=index_start, same_type=squeeze, index_str=index_str, ) if return_phase: phase_exp = pauli_rep.change_pauli_encoding( self._phase_exp, self.num_y, input_pauli_encoding=pauli_rep.INTERNAL_PAULI_ENCODING, output_pauli_encoding=output_pauli_encoding, ) return pauli_str, phase_exp else: return pauli_str
# --------------------------------------------------------------------- # The methods below should be deprecated eventually as they simply refer # to the newer versions that are now elsewhere. # --------------------------------------------------------------------- def _count_y(self) -> np.ndarray: """Count the number of Y Pauli's""" return self.num_y @staticmethod def _stack(array: np.ndarray, size: int, vertical: bool = True) -> np.ndarray: return mt.istack(array, size, interleave=vertical) @staticmethod def _phase_from_complex(coeff: numbers.Complex) -> np.ndarray: return pauli_rep.cpxstr2exp(coeff, encoding=pauli_rep.INTERNAL_PHASE_ENCODING) # --------------------------------------------------------------------- # Apply Clifford to BasePauli # --------------------------------------------------------------------- def _append_circuit( self, circuit: Union[Barrier, Delay, QuantumCircuit, Instruction], qargs: Optional[List] = None, ) -> "BasePauli": """Update BasePauli inplace by applying a Clifford circuit. Args: circuit (QuantumCircuit or Instruction): the gate or composite gate to apply. qargs (list or None): The qubits to apply gate to. Returns: BasePauli: the updated Pauli. Raises: QiskitError: if input gate cannot be decomposed into Clifford gates. """ if isinstance(circuit, (Barrier, Delay)): return self if qargs is None: qargs = list(range(self.num_qubits)) if isinstance(circuit, QuantumCircuit): gate = circuit.to_instruction() else: gate = circuit # Basis Clifford Gates basis_1q = { "i": _evolve_i, "id": _evolve_i, "iden": _evolve_i, "x": _evolve_x, "y": _evolve_y, "z": _evolve_z, "h": _evolve_h, "s": _evolve_s, "sdg": _evolve_sdg, "sinv": _evolve_sdg, } basis_2q = {"cx": _evolve_cx, "cz": _evolve_cz, "cy": _evolve_cy, "swap": _evolve_swap} # Non-Clifford gates non_clifford = ["t", "tdg", "ccx", "ccz"] if isinstance(gate, str): # Check if gate is a valid Clifford basis gate string if gate not in basis_1q and gate not in basis_2q: raise QiskitError(f"Invalid Clifford gate name string {gate}") name = gate else: # Assume gate is an Instruction name = gate.name # Apply gate if it is a Clifford basis gate if name in non_clifford: raise QiskitError(f"Cannot update Pauli with non-Clifford gate {name}") if name in basis_1q: if len(qargs) != 1: raise QiskitError("Invalid qubits for 1-qubit gate.") return basis_1q[name](self, qargs[0]) if name in basis_2q: if len(qargs) != 2: raise QiskitError("Invalid qubits for 2-qubit gate.") return basis_2q[name](self, qargs[0], qargs[1]) # If not a Clifford basis gate we try to unroll the gate and # raise an exception if unrolling reaches a non-Clifford gate. if gate.definition is None: raise QiskitError(f"Cannot apply Instruction: {gate.name}") if not isinstance(gate.definition, QuantumCircuit): raise QiskitError( f"{gate.name} instruction definition is {type(gate.definition)}; \ expected QuantumCircuit" ) flat_instr = gate.definition bit_indices = { bit: index for bits in [flat_instr.qubits, flat_instr.clbits] for index, bit in enumerate(bits) } for instr, qregs, cregs in flat_instr: if cregs: raise QiskitError( f"Cannot apply Instruction with classical registers: {instr.name}" ) # Get the integer position of the flat register new_qubits = [qargs[bit_indices[tup]] for tup in qregs] self._append_circuit(instr, new_qubits) # Since the individual gate evolution functions don't take mod # of phase we update it at the end self._phase_exp %= 4 return self
# --------------------------------------------------------------------- # Evolution by Clifford gates # --------------------------------------------------------------------- def _evolve_h(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> H.P.H""" x = base_pauli.matrix[:, qubit].copy() z = base_pauli.matrix[:, qubit + base_pauli.num_qubits].copy() base_pauli.matrix[:, qubit] = z base_pauli.matrix[:, qubit + base_pauli.num_qubits] = x base_pauli._phase_exp += 2 * np.logical_and(x, z).T return base_pauli def _evolve_s(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> S.P.Sdg""" x = base_pauli.matrix[:, qubit] base_pauli.matrix[:, qubit + base_pauli.num_qubits] ^= x base_pauli._phase_exp += x.T return base_pauli def _evolve_sdg(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> Sdg.P.S""" x = base_pauli.matrix[:, qubit] base_pauli.matrix[:, qubit + base_pauli.num_qubits] ^= x base_pauli._phase_exp -= x.T return base_pauli # pylint: disable=unused-argument def _evolve_i(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> P""" return base_pauli def _evolve_x(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> X.P.X""" base_pauli._phase_exp += 2 * base_pauli.matrix[:, qubit + base_pauli.num_qubits].T return base_pauli def _evolve_y(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> Y.P.Y""" base_pauli._phase_exp += ( 2 * base_pauli.matrix[:, qubit].T + 2 * base_pauli.matrix[:, qubit + base_pauli.num_qubits].T ) return base_pauli def _evolve_z(base_pauli: "BasePauli", qubit: int) -> "BasePauli": """Update P -> Z.P.Z""" base_pauli._phase_exp += 2 * base_pauli.matrix[:, qubit].T return base_pauli def _evolve_cx(base_pauli: "BasePauli", qctrl: int, qtrgt: int) -> "BasePauli": """Update P -> CX.P.CX""" base_pauli.matrix[:, qtrgt] ^= base_pauli.matrix[:, qctrl] base_pauli.matrix[:, qctrl + base_pauli.num_qubits] ^= base_pauli.matrix[ :, qtrgt + base_pauli.num_qubits ] return base_pauli def _evolve_cz( # pylint: disable=invalid-name base_pauli: "BasePauli", q1: int, q2: int # pylint: disable=invalid-name ) -> "BasePauli": """Update P -> CZ.P.CZ""" x1 = base_pauli.matrix[:, q1].copy() x2 = base_pauli.matrix[:, q2].copy() base_pauli.matrix[:, q1 + base_pauli.num_qubits] ^= x2 base_pauli.matrix[:, q2 + base_pauli.num_qubits] ^= x1 base_pauli._phase_exp += 2 * np.logical_and(x1, x2).T return base_pauli def _evolve_cy(base_pauli: "BasePauli", qctrl: int, qtrgt: int) -> "BasePauli": """Update P -> CY.P.CY""" x1 = base_pauli.matrix[:, qctrl].copy() x2 = base_pauli.matrix[:, qtrgt].copy() z2 = base_pauli.matrix[:, qtrgt + base_pauli.num_qubits].copy() base_pauli.matrix[:, qtrgt] ^= x1 base_pauli.matrix[:, qtrgt + base_pauli.num_qubits] ^= x1 base_pauli.matrix[:, qctrl + base_pauli.num_qubits] ^= np.logical_xor(x2, z2) base_pauli._phase_exp += x1 + 2 * np.logical_and(x1, x2).T return base_pauli def _evolve_swap( # pylint: disable=invalid-name base_pauli: "BasePauli", q1: int, q2: int # pylint: disable=invalid-name ) -> "BasePauli": """Update P -> SWAP.P.SWAP""" x1 = base_pauli.matrix[:, q1].copy() z1 = base_pauli.matrix[:, q1 + base_pauli.num_qubits].copy() base_pauli.matrix[:, q1] = base_pauli.matrix[:, q2] base_pauli.matrix[:, q1 + base_pauli.num_qubits] = base_pauli.matrix[ :, q2 + base_pauli.num_qubits ] base_pauli.matrix[:, q2] = x1 base_pauli.matrix[:, q2 + base_pauli.num_qubits] = z1 return base_pauli