CrossEntropyLoss#
- class CrossEntropyLoss[исходный код]#
Базовые классы:
Loss
This class computes the cross entropy loss for each sample as:
\[\text{CrossEntropyLoss}(predict, target) = -\sum_{i=0}^{N_{\text{classes}}} target_i * log(predict_i).\]Methods
- evaluate(predict, target)[исходный код]#
An abstract method for evaluating the loss function. Inputs are expected in a shape of
(N, *)
. WhereN
is a number of samples. Loss is computed for each sample individually.- Параметры:
- Результат:
An array with values of the loss function of the shape
(N, 1)
.- Исключение:
QiskitMachineLearningError – shapes of predict and target do not match
- Тип результата:
- gradient(predict, target)[исходный код]#
Assume softmax is used, and target vector may or may not be one-hot encoding
- Тип результата: