CrossEntropyLoss#

class CrossEntropyLoss[소스]#

기반 클래스: Loss

This class computes the cross entropy loss for each sample as:

\[\text{CrossEntropyLoss}(predict, target) = -\sum_{i=0}^{N_{\text{classes}}} target_i * log(predict_i).\]

Methods

evaluate(predict, target)[소스]#

An abstract method for evaluating the loss function. Inputs are expected in a shape of (N, *). Where N is a number of samples. Loss is computed for each sample individually.

매개변수:
  • predict (ndarray) – an array of predicted values using the model.

  • target (ndarray) – an array of the true values.

반환:

An array with values of the loss function of the shape (N, 1).

예외 발생:

QiskitMachineLearningError – shapes of predict and target do not match

반환 형식:

ndarray

gradient(predict, target)[소스]#

Assume softmax is used, and target vector may or may not be one-hot encoding

반환 형식:

ndarray