SVCLoss#
- class SVCLoss(**kwargs)[소스]#
기반 클래스:
KernelLoss
This class provides a kernel loss function for classification tasks by fitting an
SVC
model from scikit-learn. Given training samples, \(x_{i}\), with binary labels, \(y_{i}\), and a kernel, \(K_{θ}\), parameterized by values, \(θ\), the loss is defined as:\[SVCLoss = \sum_{i} a_i - 0.5 \sum_{i,j} a_i a_j y_{i} y_{j} K_θ(x_i, x_j)\]where \(a_i\) are the optimal Lagrange multipliers found by solving the standard SVM quadratic program. Note that the hyper-parameter
C
for the soft-margin penalty can be specified through the keyword args.Minimizing this loss over the parameters, \(θ\), of the kernel is equivalent to maximizing a weighted kernel alignment, which in turn yields the smallest upper bound to the SVM generalization error for a given parameterization.
See https://arxiv.org/abs/2105.03406 for further details.
- 매개변수:
**kwargs – Arbitrary keyword arguments to pass to SVC constructor within SVCLoss evaluation.
Methods
- evaluate(parameter_values, quantum_kernel, data, labels)[소스]#
An abstract method for evaluating the loss of a kernel function on a labeled dataset.
- 매개변수:
parameter_values (Sequence[float]) – An array of values to assign to the user params
quantum_kernel (TrainableKernel) – A trainable quantum kernel object to evaluate
data (ndarray) – An
(N, M)
matrix containing the dataN = # samples, M = dimension of data
labels (ndarray) – A length-N array containing the truth labels
- 반환:
A loss value
- 반환 형식: