qiskit_machine_learning.algorithms.classifiers.qsvc의 소스 코드
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Quantum Support Vector Classifier"""
import warnings
from typing import Optional
from qiskit_algorithms.utils import algorithm_globals
from sklearn.svm import SVC
from qiskit_machine_learning.algorithms.serializable_model import SerializableModelMixin
from qiskit_machine_learning.exceptions import QiskitMachineLearningWarning
from qiskit_machine_learning.kernels import BaseKernel, FidelityQuantumKernel
[문서]class QSVC(SVC, SerializableModelMixin):
r"""Quantum Support Vector Classifier that extends the scikit-learn
`sklearn.svm.SVC <https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html>`_
classifier and introduces an additional `quantum_kernel` parameter.
This class shows how to use a quantum kernel for classification. The class inherits its methods
like ``fit`` and ``predict`` from scikit-learn, see the example below.
Read more in the `scikit-learn user guide
<https://scikit-learn.org/stable/modules/svm.html#svm-classification>`_.
**Example**
.. code-block::
qsvc = QSVC(quantum_kernel=qkernel)
qsvc.fit(sample_train,label_train)
qsvc.predict(sample_test)
"""
def __init__(self, *, quantum_kernel: Optional[BaseKernel] = None, **kwargs):
"""
Args:
quantum_kernel: A quantum kernel to be used for classification.
Has to be ``None`` when a precomputed kernel is used. If None,
default to :class:`~qiskit_machine_learning.kernels.FidelityQuantumKernel`.
*args: Variable length argument list to pass to SVC constructor.
**kwargs: Arbitrary keyword arguments to pass to SVC constructor.
"""
if "kernel" in kwargs:
msg = (
"'kernel' argument is not supported and will be discarded, "
"please use 'quantum_kernel' instead."
)
warnings.warn(msg, QiskitMachineLearningWarning, stacklevel=2)
# if we don't delete, then this value clashes with our quantum kernel
del kwargs["kernel"]
self._quantum_kernel = quantum_kernel if quantum_kernel else FidelityQuantumKernel()
if "random_state" not in kwargs:
kwargs["random_state"] = algorithm_globals.random_seed
super().__init__(kernel=self._quantum_kernel.evaluate, **kwargs)
@property
def quantum_kernel(self) -> BaseKernel:
"""Returns quantum kernel"""
return self._quantum_kernel
@quantum_kernel.setter
def quantum_kernel(self, quantum_kernel: BaseKernel):
"""Sets quantum kernel"""
self._quantum_kernel = quantum_kernel
self.kernel = self._quantum_kernel.evaluate
# we override this method to be able to pretty print this instance
@classmethod
def _get_param_names(cls):
names = SVC._get_param_names()
names.remove("kernel")
return sorted(names + ["quantum_kernel"])