FermiHubbard1D¶
- class FermiHubbard1D(num_sites, particles_up, particles_down, hop_strength, int_strength, potential)[source]¶
Describes a one-dimensional Fermi-Hubbard model with open boundary conditions.
Initialize a one-dimensional fermi-hubbard system. In second quantization this system is described by the Hamiltonian
\(H = \sum_{i=1,\sigma}^{L-1} - J_i (f^\dagger_{i,\sigma} f_{i+1,\sigma} + f^\dagger_{i+1,\sigma} f_{i,\sigma}) + U \sum_{i=1}^{L} n_{i,\uparrow} n_{i,\downarrow} + \sum_{i=1,\sigma}^{L} \mu_i n_{i,\sigma}\)
- Parameters:
num_sites (
int
) – number of lattice sites in the 1D chain.particles_up (
int
) – total number of spin-up particles in the latticeparticles_down (
int
) – total number of spin-down particles in the latticehop_strength (
float
) – strength of hopping between sitesint_strength (
float
) – strength of the local interactionpotential (
List
[float
]) – list of local phases, must be on length num_wires
- Raises:
QiskitColdAtomError – if the length of the potential does not match the system size.
Attributes
Return the number of sites of the problem.
Methods
FermiHubbard1D.to_circuit
([time])Wrap the generator of the system in a QuantumCircuit.
Construct the hamiltonian of the lattice as a FermionicOp.