qiskit_nature.second_q.operators.commutators のソースコード

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Commutator Utilities (:mod:`qiskit_nature.second_q.operators.commutators`)
==========================================================================

.. currentmodule:: qiskit_nature.second_q.operators.commutators

Utility functions to compute commutators of
:class:`qiskit_nature.second_q.operators.SparseLabelOp` instances.

.. autosummary::
   :toctree: ../stubs/

   commutator
   anti_commutator
   double_commutator

"""

from .sparse_label_op import SparseLabelOp


[ドキュメント]def commutator(op_a: SparseLabelOp, op_b: SparseLabelOp) -> SparseLabelOp: r"""Compute commutator of `op_a` and `op_b`. .. math:: AB - BA. Args: op_a: Operator A. op_b: Operator B. Returns: The computed commutator. If available for your kind of operator, you may want to ``normal_order()`` it. """ return (op_a @ op_b - op_b @ op_a).simplify(atol=0)
[ドキュメント]def anti_commutator(op_a: SparseLabelOp, op_b: SparseLabelOp) -> SparseLabelOp: r"""Compute anti-commutator of `op_a` and `op_b`. .. math:: AB + BA. Args: op_a: Operator A. op_b: Operator B. Returns: The computed anti--commutator. If available for your kind of operator, you may want to ``normal_order()`` it. """ return (op_a @ op_b + op_b @ op_a).simplify(atol=0)
[ドキュメント]def double_commutator( op_a: SparseLabelOp, op_b: SparseLabelOp, op_c: SparseLabelOp, sign: bool = False, ) -> SparseLabelOp: r"""Compute symmetric double commutator of `op_a`, `op_b` and `op_c`. See also Equation (13.6.18) in [1]. If `sign` is `False`, it returns .. math:: [[A, B], C]/2 + [A, [B, C]]/2 = (2ABC + 2CBA - BAC - CAB - ACB - BCA)/2. If `sign` is `True`, it returns .. math:: \lbrace[A, B], C\rbrace/2 + \lbrace A, [B, C]\rbrace/2 = (2ABC - 2CBA - BAC + CAB - ACB + BCA)/2. Args: op_a: Operator A. op_b: Operator B. op_c: Operator C. sign: False anti-commutes, True commutes. Returns: The computed double commutator. References: [1]: R. McWeeny. Methods of Molecular Quantum Mechanics. 2nd Edition, Academic Press, 1992. ISBN 0-12-486552-6. """ sign_num = 1 if sign else -1 op_ab = op_a @ op_b op_ba = op_b @ op_a op_ac = op_a @ op_c op_ca = op_c @ op_a op_abc = op_ab @ op_c op_cba = op_c @ op_ba op_bac = op_ba @ op_c op_cab = op_c @ op_ab op_acb = op_ac @ op_b op_bca = op_b @ op_ca res = ( op_abc - sign_num * op_cba + 0.5 * (-op_bac + sign_num * op_cab - op_acb + sign_num * op_bca) ) return res.simplify(atol=0)