# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Linear Mapper."""
from __future__ import annotations
import operator
from collections import defaultdict
from fractions import Fraction
from functools import reduce
import numpy as np
from qiskit.quantum_info import Pauli, SparsePauliOp
from qiskit_nature.second_q.operators import SpinOp
from .spin_mapper import SpinMapper
[ドキュメント]class LinearMapper(SpinMapper):
"""The Linear spin-to-qubit mapping."""
def _map_single(
self, second_q_op: SpinOp, *, register_length: int | None = None
) -> SparsePauliOp:
if register_length is None:
register_length = second_q_op.register_length
qubit_ops_list: list[SparsePauliOp] = []
# get linear encoding of the general spin matrices
spinx, spiny, spinz, identity = self._linear_encoding(second_q_op.spin)
ordered_op = second_q_op.index_order()
char_map = {"X": spinx, "Y": spiny, "Z": spinz}
for terms, coeff in ordered_op.terms():
mat = defaultdict(list) # type: dict[int, list]
for op, idx in terms:
if idx not in mat:
mat[idx] = identity
mat[idx] = mat[idx] @ char_map[op]
operatorlist = [mat[i] if i in mat else identity for i in range(register_length)]
# Now, we can tensor all operators in this list
qubit_ops_list.append(coeff * reduce(operator.xor, reversed(operatorlist)))
qubit_op = reduce(operator.add, qubit_ops_list)
return qubit_op.simplify()
def _linear_encoding(self, spin: Fraction | float) -> list[SparsePauliOp]:
"""
Generates a 'linear_encoding' of the spin S operators 'X', 'Y', 'Z' and 'identity'
to qubit operators (linear combinations of pauli strings).
In this 'linear_encoding' each individual spin S system is represented via
2S+1 qubits and the state |s> is mapped to the state |00...010..00>, where the s-th qubit is
in state 1.
Returns:
The 4-element list of transformed spin S 'X', 'Y', 'Z' and 'identity' operators.
I.e. spin_op_encoding[0]` corresponds to the linear combination of pauli strings needed
to represent the embedded 'X' operator
"""
dspin = int(2 * spin + 1)
nqubits = dspin
# quick functions to generate a pauli with X / Y / Z at location `i`
pauli_id = Pauli("I" * nqubits)
def pauli_x(i):
return Pauli("I" * i + "X" + "I" * (nqubits - i - 1))
def pauli_y(i):
return Pauli("I" * i + "Y" + "I" * (nqubits - i - 1))
def pauli_z(i):
return Pauli("I" * i + "Z" + "I" * (nqubits - i - 1))
# 1. build the non-diagonal X operator
x_summands = []
for i, coeff in enumerate(np.diag(SpinOp.x(spin).to_matrix(), 1)):
x_summands.append(
coeff / 2.0 * SparsePauliOp(pauli_x(i).dot(pauli_x(i + 1)))
+ coeff / 2.0 * SparsePauliOp(pauli_y(i).dot(pauli_y(i + 1)))
)
# 2. build the non-diagonal Y operator
y_summands = []
for i, coeff in enumerate(np.diag(SpinOp.y(spin).to_matrix(), 1)):
y_summands.append(
-1j * coeff / 2.0 * SparsePauliOp(pauli_x(i).dot(pauli_y(i + 1)))
+ 1j * coeff / 2.0 * SparsePauliOp(pauli_y(i).dot(pauli_x(i + 1)))
)
# 3. build the diagonal Z
z_summands = []
for i, coeff in enumerate(np.diag(SpinOp.z(spin).to_matrix())):
# get the first upper diagonal of coeff.
z_summands.append(
coeff / 2.0 * SparsePauliOp(pauli_z(i)) + coeff / 2.0 * SparsePauliOp(pauli_id)
)
# return the lookup table for the transformed XYZI operators
spin_op_encoding = [
reduce(operator.add, x_summands),
reduce(operator.add, y_summands),
reduce(operator.add, z_summands),
SparsePauliOp(pauli_id),
]
return spin_op_encoding