# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The kagome lattice"""
from __future__ import annotations
from dataclasses import asdict
from itertools import product
import numpy as np
from rustworkx import PyGraph
from .boundary_condition import BoundaryCondition
from .lattice import Lattice, LatticeDrawStyle
[ドキュメント]class KagomeLattice(Lattice):
r"""The two-dimensional kagome lattice.
The kagome lattice is a two-dimensional Bravais lattice formed by tiling together
equilateral triangles and regular hexagons in an alternating pattern. The lattice is
spanned by the primitive lattice vectors :math:`\vec{a}_{1} = (1, 0)^{\top}` and
:math:`\vec{a}_{2} = (1/2, \sqrt{3}/2)^{\top}` with each unit cell consisting of three
lattice sites located at :math:`\vec{r}_0 = \mathbf{0}`, :math:`\vec{r}_1 = 2\vec{a}_{1}`
and :math:`\vec{r}_2 = 2 \vec{a}_{2}`, respectively.
This class allows for the simple construction of kagome lattices. For example,
.. code-block:: python
from qiskit_nature.second_q.hamiltonians.lattices import (
BoundaryCondition,
KagomeLattice,
)
kagome = KagomeLattice(
5,
4,
edge_parameter = 1.0,
onsite_parameter = 2.0,
boundary_condition = BoundaryCondition.PERIODIC
)
instantiates a kagome lattice with 5 and 4 unit cells in the x and y direction,
respectively, which has weights 1.0 on all edges and weights 2.0 on self-loops.
The boundary conditions are periodic for the entire lattice.
References:
- `Kagome Lattice @ wikipedia <https://en.wikipedia.org/wiki/Trihexagonal_tiling>`_
- `Bravais Lattice @ wikipedia <https://en.wikipedia.org/wiki/Bravais_lattice>`_
"""
# Dimension of lattice
_dim = 2
# Number of sites in a unit cell
_num_sites_per_cell = 3
# Relative positions (relative to site 0) of sites in a unit cell
_cell_positions = np.array([[0, 0], [1, 0], [1 / 2, np.sqrt(3) / 2]])
# Primitive translation vectors in each direction
_basis = np.array([[2, 0], [1, np.sqrt(3)]])
def __init__(
self,
rows: int,
cols: int,
edge_parameter: complex = 1.0,
onsite_parameter: complex = 0.0,
boundary_condition: BoundaryCondition
| tuple[BoundaryCondition, BoundaryCondition] = BoundaryCondition.OPEN,
) -> None:
"""
Args:
rows: Number of unit cells in the x direction.
cols: Number of unit cells in the y direction.
edge_parameter: Weight on all the edges, specified as a single value
Defaults to 1.0,
onsite_parameter: Weight on the self-loops, which are edges connecting a node to itself.
Defaults to 0.0.
boundary_condition: Boundary condition for each direction.
The available boundary conditions are:
:attr:`.BoundaryCondition.OPEN`, :attr:`.BoundaryCondition.PERIODIC`.
Defaults to :attr:`.BoundaryCondition.OPEN`.
Raises:
ValueError: When edge parameter or boundary condition is a tuple,
the length of that is not the same as that of size.
"""
self._rows = rows
self._cols = cols
self._size = (rows, cols)
self._edge_parameter = edge_parameter
self._onsite_parameter = onsite_parameter
if isinstance(boundary_condition, BoundaryCondition):
boundary_condition = (boundary_condition, boundary_condition)
elif isinstance(boundary_condition, tuple):
if len(boundary_condition) != self._dim:
raise ValueError(
"size mismatch, "
f"`boundary_condition`: {len(boundary_condition)}, `size`: {self._dim}."
"The length of `boundary_condition` must be the same as that of size."
)
self._boundary_condition = boundary_condition
graph: PyGraph = PyGraph(multigraph=False)
graph.add_nodes_from(range(self._num_sites_per_cell * np.prod(self._size)))
# add edges excluding the boundary edges
bulk_edges = self._bulk_edges()
graph.add_edges_from(bulk_edges)
# add self-loops
self_loop_list = self._self_loops()
graph.add_edges_from(self_loop_list)
# add edges that cross the boundaries
boundary_edge_list = self._boundary_edges()
graph.add_edges_from(boundary_edge_list)
# a list of edges that depend on the boundary condition
self.boundary_edges = [(edge[0], edge[1]) for edge in boundary_edge_list]
super().__init__(graph)
# default position
self.pos = self._default_position()
def _coordinate_to_index(self, coord: np.ndarray) -> int:
"""Convert the coordinate of a lattice point to an integer for labeling.
When self.size=(l0, l1), then a coordinate (x0, x1) is converted as
x0 + x1*l0.
Args:
coord: Input coordinate to be converted.
Returns:
Return x0 + x1*l0 where coord=np.array([x0, x1]) and self.size=(l0, l1).
"""
base = np.array([np.prod(self._size[:i]) for i in range(self._dim)], dtype=int)
return np.dot(coord, base).item()
def _self_loops(self) -> list[tuple[int, int, complex]]:
"""Return a list consisting of the self-loops on all the nodes.
Returns:
A list of the self-loops.
"""
onsite_parameter = self._onsite_parameter
num_nodes = self._num_sites_per_cell * np.prod(self._size)
return [(node_a, node_a, onsite_parameter) for node_a in range(num_nodes)]
def _bulk_edges(self) -> list[tuple[int, int, complex]]:
"""Return a list consisting of the edges in the bulk, which don't cross the boundaries.
Returns:
A list of weighted edges that do not cross the boundaries.
"""
edge_parameter = self._edge_parameter
num_sites_per_cell = self._num_sites_per_cell
list_of_edges = []
unit_cell_coordinates = list(product(*map(range, self._size)))
for x, y in unit_cell_coordinates:
# each cell is indexed by its leftmost lattice site
cell_a_idx = self._coordinate_to_index(np.array([x, y]))
# indices of sites within unit cell
cell_a_0 = num_sites_per_cell * cell_a_idx
cell_a_1 = num_sites_per_cell * cell_a_idx + 1
cell_a_2 = num_sites_per_cell * cell_a_idx + 2
# connect sites within a unit cell
list_of_edges.append((cell_a_0, cell_a_1, edge_parameter))
list_of_edges.append((cell_a_1, cell_a_2, edge_parameter))
list_of_edges.append((cell_a_2, cell_a_0, edge_parameter))
# one cell east if not at the east boundary
if x != self._rows - 1:
cell_b_idx = self._coordinate_to_index(np.array([x, y]) + np.array([1, 0]))
cell_b_0 = num_sites_per_cell * cell_b_idx
list_of_edges.append((cell_a_1, cell_b_0, edge_parameter))
# one cell north if not at the north boundary
if y != self._cols - 1:
cell_b_idx = self._coordinate_to_index(np.array([x, y]) + np.array([0, 1]))
cell_b_0 = num_sites_per_cell * cell_b_idx
list_of_edges.append((cell_a_2, cell_b_0, edge_parameter))
# one cell west and north if not at west north boundary
if x != 0 and y != self._cols - 1:
cell_b_idx = self._coordinate_to_index(np.array([x, y]) + np.array([-1, 1]))
cell_b_1 = num_sites_per_cell * cell_b_idx + 1
list_of_edges.append((cell_a_2, cell_b_1, edge_parameter))
return list_of_edges
def _boundary_edges(self) -> list[tuple[int, int, complex]]:
"""Return a list consisting of the edges that cross the boundaries
depending on the boundary conditions.
Raises:
ValueError: Given boundary condition is invalid values.
Returns:
A list of weighted edges that cross the boundaries.
"""
list_of_edges = []
edge_parameter = self._edge_parameter
num_sites_per_cell = self._num_sites_per_cell
boundary_condition = self._boundary_condition
is_x_periodic = boundary_condition[0] == BoundaryCondition.PERIODIC
is_y_periodic = boundary_condition[1] == BoundaryCondition.PERIODIC
# add edges when the boundary condition is periodic.
# The periodic boundary condition in the x direction.
# It makes sense only when rows is greater than 1.
if is_x_periodic and self._rows > 1:
for y in range(self._cols):
cell_a_idx = self._coordinate_to_index(np.array([self._rows - 1, y]))
cell_a_1 = num_sites_per_cell * cell_a_idx + 1
cell_b_idx = self._coordinate_to_index(np.array([0, y]))
cell_b_0 = num_sites_per_cell * cell_b_idx
list_of_edges.append((cell_a_1, cell_b_0, edge_parameter.conjugate()))
# The periodic boundary condition in the y direction.
# It makes sense only when cols is greater than 1.
if is_y_periodic and self._cols > 1:
for x in range(self._rows):
cell_a_idx = self._coordinate_to_index(np.array([x, self._cols - 1]))
cell_a_2 = num_sites_per_cell * cell_a_idx + 2
cell_b_idx = self._coordinate_to_index(np.array([x, 0]))
cell_b_0 = num_sites_per_cell * cell_b_idx
list_of_edges.append((cell_a_2, cell_b_0, edge_parameter.conjugate()))
if is_x_periodic and is_y_periodic:
# The periodic boundary condition in the diagonal directions.
for x in range(1, self._rows):
cell_a_idx = self._coordinate_to_index(np.array([x, self._cols - 1]))
cell_a_2 = num_sites_per_cell * cell_a_idx + 2
cell_b_idx = self._coordinate_to_index(np.array([(x - 1) % self._rows, 0]))
cell_b_1 = num_sites_per_cell * cell_b_idx + 1
list_of_edges.append((cell_a_2, cell_b_1, edge_parameter.conjugate()))
for y in range(self._cols - 1):
cell_a_idx = self._coordinate_to_index(np.array([0, y]))
cell_a_2 = num_sites_per_cell * cell_a_idx + 2
cell_b_idx = self._coordinate_to_index(
np.array([self._rows - 1, (y + 1) % self._cols])
)
cell_b_1 = num_sites_per_cell * cell_b_idx + 1
list_of_edges.append((cell_a_2, cell_b_1, edge_parameter.conjugate()))
# isolating x = 0, y = cols - 1 to prevent duplicating edges
cell_a_idx = self._coordinate_to_index(np.array([0, self._cols - 1]))
cell_a_2 = num_sites_per_cell * cell_a_idx + 2
cell_b_idx = self._coordinate_to_index(np.array([self._rows - 1, 0]))
cell_b_1 = num_sites_per_cell * cell_b_idx + 1
list_of_edges.append((cell_a_2, cell_b_1, edge_parameter.conjugate()))
for i in range(self._dim):
if not isinstance(boundary_condition[i], BoundaryCondition):
raise ValueError(
f"Invalid `boundary condition` {boundary_condition[i]} is given."
"`boundary condition` must be "
+ " or ".join(str(bc) for bc in BoundaryCondition)
)
return list_of_edges
def _default_position(self) -> dict[int, list[float]]:
"""Return a dictionary of default positions for visualization of a two-dimensional lattice.
Returns:
The keys are the labels of lattice points,
and the values are two-dimensional coordinates.
"""
boundary_condition = self._boundary_condition
num_sites_per_cell = self._num_sites_per_cell
pos = {}
width = np.array([0.0, 0.0])
for i in (0, 1):
if boundary_condition[i] == BoundaryCondition.PERIODIC:
# the positions are shifted along the y-direction
# when the boundary condition in the x-direction is periodic and vice versa.
# The width of the shift is fixed to 0.2.
width[(i + 1) % 2] = 0.2
for cell_idx in range(np.prod(self._size)):
# maps an cell index to two-dimensional coordinate
# the positions are shifted so that the edges between boundaries can be seen
# for the periodic cases.
cell_coord = np.array(divmod(cell_idx, self._size[0])[::-1]) + width * np.cos(
np.pi
* (np.array(divmod(cell_idx, self._size[0])))
/ (np.array(self._size)[::-1] - 1)
)
for i in range(num_sites_per_cell):
node_i = num_sites_per_cell * cell_idx + i
pos[node_i] = (np.dot(cell_coord, self._basis) + self._cell_positions[i]).tolist()
return pos
def _style_pos(self) -> dict[int, list[float]]:
"""Return a dictionary of positions for visualization of a two-dimensional lattice without
boundaries.
Returns:
The keys are the labels of lattice points,
and the values are two-dimensional coordinates.
"""
num_sites_per_cell = self._num_sites_per_cell
basis = self._basis
cell_positions = self._cell_positions
pos = {}
for cell_idx in range(np.prod(self._size)):
# maps an cell index to two-dimensional coordinate
# the positions are shifted so that the edges between boundaries can be seen
# for the periodic cases.
cell_coord = np.array(divmod(cell_idx, self._size[0])[::-1])
for i in range(num_sites_per_cell):
node_i = num_sites_per_cell * cell_idx + i
pos[node_i] = (np.dot(cell_coord, basis) + cell_positions[i]).tolist()
return pos
@property
def rows(self) -> int:
"""Number of unit cells in the x direction.
Returns:
The number of rows of the lattice.
"""
return self._rows
@property
def cols(self) -> int:
"""Number of unit cells in the y direction.
Returns:
The number of columns of the lattice.
"""
return self._cols
@property
def size(self) -> tuple[int, int]:
"""Number of unit cells in the x and y direction, respectively.
Returns:
The size of the lattice.
"""
return self._size
@property
def edge_parameter(self) -> complex:
"""Weights on all edges.
Returns:
The parameter for the edges.
"""
return self._edge_parameter
@property
def onsite_parameter(self) -> complex:
"""Weight on the self-loops.
Returns:
The parameter for the self-loops.
"""
return self._onsite_parameter
@property
def boundary_condition(self) -> BoundaryCondition | tuple[BoundaryCondition, BoundaryCondition]:
"""Boundary condition for the entire lattice.
Returns:
The boundary condition.
"""
return self._boundary_condition
[ドキュメント] def draw_without_boundary(
self,
*,
self_loop: bool = False,
style: LatticeDrawStyle | None = None,
):
r"""Draw the lattice with no edges between the boundaries.
Args:
self_loop: Draw self-loops in the lattice. Defaults to False.
style : Styles for rustworkx.visualization.mpl_draw.
Please see
https://qiskit.org/documentation/rustworkx/stubs/rustworkx.visualization.mpl_draw.html#rustworkx.visualization.mpl_draw
for details.
"""
graph = self.graph
if style is None:
style = LatticeDrawStyle()
elif not isinstance(style, LatticeDrawStyle):
style = LatticeDrawStyle(**style)
if style.pos is None:
style.pos = self._default_position()
graph.remove_edges_from(self.boundary_edges)
self._mpl(
graph=graph,
self_loop=self_loop,
**asdict(style),
)