# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Heisenberg model."""
from __future__ import annotations
from fractions import Fraction
import numpy as np
from qiskit_nature.second_q.operators import SpinOp
from .lattice_model import LatticeModel
from .lattices import Lattice
[ドキュメント]class HeisenbergModel(LatticeModel):
r"""The Heisenberg model.
This class implements the following Hamiltonian:
.. math::
H = - \vec{J} \sum_{\langle i, j \rangle} \vec{\sigma}_{i} \otimes \vec{\sigma}_{j}
- \vec{h} \sum_{i} \vec{\sigma}_{i}
where :math:`i,j` refer to lattice nodes. The :math:`\sum_{\langle i, j \rangle}` is performed
over adjacent lattice nodes. This model assumes spin-:math:`\frac{1}{2}` particles. Thus,
:math:`\vec{\sigma}_{i} = (X_i, Y_i, Z_i)` is a vector containing the Pauli matrices.
:math:`\vec{J}` is the coupling constant and :math:`\vec{h}` is the external magnetic field,
both with dimensions of energy.
This model is instantiated using a
:class:`~qiskit_nature.second_q.hamiltonians.lattices.Lattice`. For example, using a
:class:`~qiskit_nature.second_q.hamiltonians.lattices.LineLattice`:
.. code-block:: python
line_lattice = LineLattice(num_nodes=10, boundary_condition=BoundaryCondition.OPEN)
heisenberg_model = HeisenbergModel(line_lattice, (1.0, 1.0, 1.0), (0.0, 0.0, 1.0))
The transverse-field Ising model can be recovered as a special case of the Heisenberg model
by limiting the model to spins that are parallel/antiparallel with respect to a transverse
magnetic field:
.. code-block:: python
heisenberg_model = HeisenbergModel(line_lattice, (0.0, 0.0, 1.0), (1.0, 0.0, 0.0))
"""
def __init__(
self,
lattice: Lattice,
coupling_constants: tuple = (1.0, 1.0, 1.0),
ext_magnetic_field: tuple = (0.0, 0.0, 0.0),
) -> None:
"""
Args:
lattice: Lattice on which the model is defined.
coupling_constants: The coupling constants in each Cartesian axis.
Defaults to ``(1.0, 1.0, 1.0)``.
ext_magnetic_field: Represents a magnetic field in Cartesian coordinates.
Defaults to ``(0.0, 0.0, 0.0)``.
"""
super().__init__(lattice)
self.coupling_constants = coupling_constants
self.ext_magnetic_field = ext_magnetic_field
@property
def register_length(self) -> int:
return self._lattice.num_nodes
[ドキュメント] def second_q_op(self) -> SpinOp:
"""Return the Hamiltonian of the Heisenberg model in terms of ``SpinOp``.
Returns:
SpinOp: The Hamiltonian of the Heisenberg model.
"""
hamiltonian = {}
weighted_edge_list = self.lattice.weighted_edge_list
for node_a, node_b, _ in weighted_edge_list:
if node_a == node_b:
index = node_a
for axis, coeff in zip("XYZ", self.ext_magnetic_field):
if not np.isclose(coeff, 0.0):
hamiltonian[f"{axis}_{index}"] = coeff
else:
index_left = node_a
index_right = node_b
for axis, coeff in zip("XYZ", self.coupling_constants):
if not np.isclose(coeff, 0.0):
hamiltonian[f"{axis}_{index_left} {axis}_{index_right}"] = coeff
return SpinOp(hamiltonian, spin=Fraction(1, 2), num_spins=self.lattice.num_nodes)