qiskit_nature.second_q.circuit.library.initial_states.fermionic_gaussian_state のソースコード

# This code is part of a Qiskit project.
# (C) Copyright IBM 2021, 2023.
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Fermionic Gaussian states."""

from __future__ import annotations

from typing import Sequence

import numpy as np
from qiskit import QuantumCircuit, QuantumRegister
from qiskit_nature.second_q.mappers import QubitMapper, JordanWignerMapper

from .utils.givens_rotations import _prepare_fermionic_gaussian_state_jw

def _validate_transformation_matrix(
    mat: np.ndarray, rtol: float = 1e-5, atol: float = 1e-8
) -> None:
    if not len(mat.shape) == 2:
        raise ValueError(
            "transformation_matrix must be a 2-dimensional array. "
            f"Instead, got shape {mat.shape}."

    n, p = mat.shape  # pylint: disable=invalid-name
    if p != n * 2:
        raise ValueError(
            "transformation_matrix must have shape (n_orbitals, 2 * n_orbitals). "
            f"Instead, got shape {mat.shape}."

    left = mat[:, :n]
    right = mat[:, n:]
    comm1 = left @ left.T.conj() + right @ right.T.conj()
    comm2 = left @ right.T + right @ left.T
    if not np.allclose(comm1, np.eye(n), rtol=rtol, atol=atol) or not np.allclose(
        comm2, 0.0, atol=atol
        raise ValueError(
            "transformation_matrix does not describe a valid transformation "
            "of fermionic ladder operators. A valid matrix should have the block form "
            "[W1 W2] where W1 @ W1.T.conj() + W2 @ W2.T.conj() = I and "
            "W1 @ W2.T + W2 @ W1.T = 0."

[ドキュメント]class FermionicGaussianState(QuantumCircuit): r"""A circuit that prepares a fermionic Gaussian state. A fermionic Gaussian state is a state of the form .. math:: b^\dagger_1 \cdots b^\dagger_{N_p} \lvert \overline{\text{vac}} \rangle, where .. math:: \begin{pmatrix} b^\dagger_1 \\ \vdots \\ b^\dagger_N \\ \end{pmatrix} = W \begin{pmatrix} a^\dagger_1 \\ \vdots \\ a^\dagger_N \\ a_1 \\ \vdots \\ a_N \end{pmatrix}. - :math:`a^\dagger_1, \ldots, a^\dagger_{N}` are the fermionic creation operators. - :math:`W` is an :math:`N \times 2N` matrix such that :math:`b^\dagger_1, \ldots, b^\dagger_{N}` also satisfy the fermionic anticommutation relations. - :math:`\lvert \overline{\text{vac}} \rangle` is the mutual 0-eigenvector of the operators :math:`\{b_j^\dagger b_j\}`. The matrix :math:`W` has the block form .. math:: \begin{pmatrix} W_1 & W_2 \end{pmatrix}, where :math:`W_1` and :math:`W_2` must satisfy .. math:: W_1 W_1^\dagger + W_2 W_2^\dagger = I \\ W_1 W_2^T + W_2 W_1^T = 0. The matrix :math:`W` is commonly obtained by calling the :meth:`~.QuadraticHamiltonian.diagonalizing_bogoliubov_transform` method of the :class:`~.QuadraticHamiltonian` class. This matrix is used to create circuits that prepare eigenstates of the quadratic Hamiltonian. Currently, only the Jordan-Wigner transformation is supported. Reference: `arXiv:1711.05395`_ .. _arXiv:1711.05395: https://arxiv.org/abs/1711.05395 """ def __init__( self, transformation_matrix: np.ndarray, occupied_orbitals: Sequence[int] | None = None, qubit_mapper: QubitMapper | None = None, *, validate: bool = True, rtol: float = 1e-5, atol: float = 1e-8, **circuit_kwargs, ) -> None: # pylint: disable=unused-argument r""" Args: transformation_matrix: The matrix :math:`W` that specifies the coefficients of the new creation operators in terms of the original creation and annihilation operators. This matrix must satisfy special constraints, as detailed above. occupied_orbitals: The pseudo-particle orbitals to fill. These refer to the indices of the operators :math:`\{b^\dagger_j\}` from the main body of the docstring of this function. The default behavior is to use the empty set of orbitals, which corresponds to a state with zero pseudo-particles. qubit_mapper: The ``QubitMapper``. The default behavior is to create one using the call ``JordanWignerMapper()``. validate: Whether to validate the inputs. rtol: Relative numerical tolerance for input validation. atol: Absolute numerical tolerance for input validation. circuit_kwargs: Keyword arguments to pass to the ``QuantumCircuit`` initializer. Raises: ValueError: transformation_matrix must be a 2-dimensional array. ValueError: transformation_matrix must have shape ``(n_orbitals, 2 * n_orbitals)``. ValueError: transformation_matrix does not describe a valid transformation of fermionic ladder operators. A valid matrix has the block form :math:`(W_1 \quad W_2)` where :math:`W_1 W_1^\dagger + W_2 W_2^\dagger = I` and :math:`W_1 W_2^T + W_2 W_1^T = 0`. NotImplementedError: Currently, only the Jordan-Wigner Transform is supported. Please use the :class:`qiskit_nature.second_q.mappers.JordanWignerMapper`. """ if validate: _validate_transformation_matrix(transformation_matrix, rtol=rtol, atol=atol) if occupied_orbitals is None: occupied_orbitals = [] if qubit_mapper is None: qubit_mapper = JordanWignerMapper() n, _ = transformation_matrix.shape register = QuantumRegister(n) super().__init__(register, **circuit_kwargs) if isinstance(qubit_mapper, JordanWignerMapper): operations = _prepare_fermionic_gaussian_state_jw( register, transformation_matrix, occupied_orbitals ) for gate, qubits in operations: self.append(gate, qubits) else: raise NotImplementedError( "Currently, only the Jordan-Wigner Transform is supported. " "Please use the qiskit_nature.second_q.mappers.JordanWignerMapper." )