QSVC#

class QSVC(*, quantum_kernel=None, **kwargs)[स्रोत]#

आधार: SVC, SerializableModelMixin

Quantum Support Vector Classifier that extends the scikit-learn sklearn.svm.SVC classifier and introduces an additional quantum_kernel parameter.

This class shows how to use a quantum kernel for classification. The class inherits its methods like fit and predict from scikit-learn, see the example below. Read more in the scikit-learn user guide.

Example

qsvc = QSVC(quantum_kernel=qkernel)
qsvc.fit(sample_train,label_train)
qsvc.predict(sample_test)
मापदण्ड:
  • quantum_kernel (BaseKernel | None) -- A quantum kernel to be used for classification. Has to be None when a precomputed kernel is used. If None, default to FidelityQuantumKernel.

  • *args -- Variable length argument list to pass to SVC constructor.

  • **kwargs -- Arbitrary keyword arguments to pass to SVC constructor.

Attributes

coef_#

Weights assigned to the features when kernel="linear".

प्रदत्त प्रकार :

ndarray of shape (n_features, n_classes)

n_support_#

Number of support vectors for each class.

probA_#

Parameter learned in Platt scaling when probability=True.

प्रदत्त प्रकार :

ndarray of shape (n_classes * (n_classes - 1) / 2)

probB_#

Parameter learned in Platt scaling when probability=True.

प्रदत्त प्रकार :

ndarray of shape (n_classes * (n_classes - 1) / 2)

quantum_kernel#

Returns quantum kernel

unused_param = 'nu'#

Methods

decision_function(X)#

Evaluate the decision function for the samples in X.

मापदण्ड:

X (array-like of shape (n_samples, n_features)) -- The input samples.

प्रदत्त :

X -- Returns the decision function of the sample for each class in the model. If decision_function_shape='ovr', the shape is (n_samples, n_classes).

प्रदत्त प्रकार :

ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)

टिप्पणियाँ

If decision_function_shape='ovo', the function values are proportional to the distance of the samples X to the separating hyperplane. If the exact distances are required, divide the function values by the norm of the weight vector (coef_). See also this question for further details. If decision_function_shape='ovr', the decision function is a monotonic transformation of ovo decision function.

fit(X, y, sample_weight=None)#

Fit the SVM model according to the given training data.

मापदण्ड:
  • X ({array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)) -- Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples).

  • y (array-like of shape (n_samples,)) -- Target values (class labels in classification, real numbers in regression).

  • sample_weight (array-like of shape (n_samples,), default=None) -- Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.

प्रदत्त :

self -- Fitted estimator.

प्रदत्त प्रकार :

object

टिप्पणियाँ

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

प्रदत्त :

routing -- A MetadataRequest encapsulating routing information.

प्रदत्त प्रकार :

MetadataRequest

get_params(deep=True)#

Get parameters for this estimator.

मापदण्ड:

deep (bool, default=True) -- If True, will return the parameters for this estimator and contained subobjects that are estimators.

प्रदत्त :

params -- Parameter names mapped to their values.

प्रदत्त प्रकार :

dict

classmethod load(file_name)#

Loads a model from the file. If the loaded model is not an instance of the class whose method was called, then a warning is raised. Nevertheless, the loaded model may be a valid model.

मापदण्ड:

file_name (str) -- a file name or path to load a model from.

प्रदत्त :

A loaded model.

उभारता है :

TypeError -- if a loaded model is not an instance of the expected class.

प्रदत्त प्रकार :

Any

predict(X)#

Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

मापदण्ड:

X ({array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test, n_samples_train)) -- For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train).

प्रदत्त :

y_pred -- Class labels for samples in X.

प्रदत्त प्रकार :

ndarray of shape (n_samples,)

predict_log_proba(X)#

Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability set to True.

मापदण्ड:

X (array-like of shape (n_samples, n_features) or (n_samples_test, n_samples_train)) -- For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train).

प्रदत्त :

T -- Returns the log-probabilities of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.

प्रदत्त प्रकार :

ndarray of shape (n_samples, n_classes)

टिप्पणियाँ

The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets.

predict_proba(X)#

Compute probabilities of possible outcomes for samples in X.

The model needs to have probability information computed at training time: fit with attribute probability set to True.

मापदण्ड:

X (array-like of shape (n_samples, n_features)) -- For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train).

प्रदत्त :

T -- Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.

प्रदत्त प्रकार :

ndarray of shape (n_samples, n_classes)

टिप्पणियाँ

The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets.

save(file_name)#

Saves this model to the specified file. Internally, the model is serialized via dill. All parameters are saved, including a primitive instance that is referenced by internal objects. That means if a model is loaded from a file and is used, for instance, for inference, the same primitive will be used even if a cloud primitive was used.

मापदण्ड:

file_name (str) -- a file name or path where to save the model.

score(X, y, sample_weight=None)#

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

मापदण्ड:
  • X (array-like of shape (n_samples, n_features)) -- Test samples.

  • y (array-like of shape (n_samples,) or (n_samples, n_outputs)) -- True labels for X.

  • sample_weight (array-like of shape (n_samples,), default=None) -- Sample weights.

प्रदत्त :

score -- Mean accuracy of self.predict(X) w.r.t. y.

प्रदत्त प्रकार :

float

set_fit_request(*, sample_weight='$UNCHANGED$')#

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

संस्करण 1.3 से नया .

टिप्पणी

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

मापदण्ड:

sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) -- Metadata routing for sample_weight parameter in fit.

प्रदत्त :

self -- The updated object.

प्रदत्त प्रकार :

object

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object.

मापदण्ड:

**params (dict) -- Estimator parameters.

प्रदत्त :

self -- Estimator instance.

प्रदत्त प्रकार :

estimator instance

set_score_request(*, sample_weight='$UNCHANGED$')#

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

संस्करण 1.3 से नया .

टिप्पणी

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

मापदण्ड:

sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) -- Metadata routing for sample_weight parameter in score.

प्रदत्त :

self -- The updated object.

प्रदत्त प्रकार :

object