Note
This page was generated from docs/tutorials/03_european_call_option_pricing.ipynb.
Pricing European Call Options#
Introduction#
Suppose a European call option with strike price
In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:
as well as the corresponding
The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:
[1]:
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit_algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
Uncertainty Model#
We construct a circuit to load a log-normal random distribution into a quantum state. The distribution is truncated to a given interval
where
[2]:
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
[3]:
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()

Payoff Function#
The payoff function equals zero as long as the spot price at maturity
The linear part itself is then approximated as follows. We exploit the fact that
for small
We can easily construct an operator that acts as
using controlled Y-rotations.
Eventually, we are interested in the probability of measuring
For more details on the approximation, we refer to: Quantum Risk Analysis. Woerner, Egger. 2018.
[4]:
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = high - strike_price
european_call_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=c_approx,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
european_call = QuantumCircuit(num_qubits)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))
# draw the circuit
european_call.draw()
[4]:
┌───────┐┌────┐ q_0: ┤0 ├┤0 ├ │ ││ │ q_1: ┤1 P(X) ├┤1 ├ │ ││ │ q_2: ┤2 ├┤2 ├ └───────┘│ │ q_3: ─────────┤3 F ├ │ │ q_4: ─────────┤4 ├ │ │ q_5: ─────────┤5 ├ │ │ q_6: ─────────┤6 ├ └────┘
[5]:
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()

[6]:
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
exact expected value: 0.1623
exact delta value: 0.8098
Evaluate Expected Payoff#
[7]:
european_call.draw()
[7]:
┌───────┐┌────┐ q_0: ┤0 ├┤0 ├ │ ││ │ q_1: ┤1 P(X) ├┤1 ├ │ ││ │ q_2: ┤2 ├┤2 ├ └───────┘│ │ q_3: ─────────┤3 F ├ │ │ q_4: ─────────┤4 ├ │ │ q_5: ─────────┤5 ├ │ │ q_6: ─────────┤6 ├ └────┘
[8]:
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_call,
objective_qubits=[3],
post_processing=european_call_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100, "seed": 75})
)
[9]:
result = ae.estimate(problem)
[10]:
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
Exact value: 0.1623
Estimated value: 0.1687
Confidence interval: [0.1637, 0.1737]
Instead of constructing these circuits manually, the Qiskit Finance module offers the EuropeanCallPricing
circuit, which already implements this functionality as a building block.
[11]:
from qiskit_finance.applications.estimation import EuropeanCallPricing
european_call_pricing = EuropeanCallPricing(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
rescaling_factor=c_approx,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
[12]:
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_pricing.to_estimation_problem()
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100, "seed": 75})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
Exact value: 0.1623
Estimated value: 0.1687
Confidence interval: [0.1637, 0.1737]
Evaluate Delta#
The Delta is a bit simpler to evaluate than the expected payoff. Similarly to the expected payoff, we use a comparator circuit and an ancilla qubit to identify the cases where
[13]:
from qiskit_finance.applications.estimation import EuropeanCallDelta
european_call_delta = EuropeanCallDelta(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
[14]:
european_call_delta._objective.decompose().draw()
[14]:
┌──────┐ state_0: ┤0 ├ │ │ state_1: ┤1 ├ │ │ state_2: ┤2 ├ │ cmp │ state_3: ┤3 ├ │ │ work_0: ┤4 ├ │ │ work_1: ┤5 ├ └──────┘
[15]:
european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits)
european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits))
european_call_delta_circ.append(
european_call_delta._objective, range(european_call_delta._objective.num_qubits)
)
european_call_delta_circ.draw()
[15]:
┌───────┐┌──────┐ q_0: ┤0 ├┤0 ├ │ ││ │ q_1: ┤1 P(X) ├┤1 ├ │ ││ │ q_2: ┤2 ├┤2 ├ └───────┘│ ECD │ q_3: ─────────┤3 ├ │ │ q_4: ─────────┤4 ├ │ │ q_5: ─────────┤5 ├ └──────┘
[16]:
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_delta.to_estimation_problem()
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100, "seed": 75})
)
[17]:
result_delta = ae_delta.estimate(problem)
[18]:
conf_int = np.array(result_delta.confidence_interval_processed)
print("Exact delta: \t%.4f" % exact_delta)
print("Estimated value: \t%.4f" % european_call_delta.interpret(result_delta))
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
Exact delta: 0.8098
Estimated value: 0.8091
Confidence interval: [0.8034, 0.8148]
[19]:
import tutorial_magics
%qiskit_version_table
%qiskit_copyright
Version Information
Software | Version |
---|---|
qiskit | 1.0.1 |
qiskit_finance | 0.4.1 |
qiskit_algorithms | 0.3.0 |
qiskit_aer | 0.13.3 |
qiskit_optimization | 0.6.1 |
System information | |
Python version | 3.8.18 |
OS | Linux |
Thu Feb 29 03:06:14 2024 UTC |
This code is a part of a Qiskit project
© Copyright IBM 2017, 2024.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.
[ ]: