Source code for ffsim.variational.hopgate

# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Hop gate ansatz."""

from __future__ import annotations

import itertools
from dataclasses import dataclass
from typing import cast

import numpy as np

from ffsim.gates import apply_hop_gate, apply_orbital_rotation
from ffsim.variational.util import (
    orbital_rotation_from_parameters,
    orbital_rotation_to_parameters,
)


[docs] @dataclass(frozen=True) class HopGateAnsatzOperator: """A hop gate ansatz operator. The hop gate ansatz consists of a sequence of `hop gates`_. Note that this ansatz does not implement any interactions between spin alpha and spin beta orbitals. It was designed to be used with `entanglement forging`_. Attributes: norb (int): The number of spatial orbitals. interaction_pairs (list[tuple[int, int]]): The orbital pairs to apply the hop gates to. thetas (np.ndarray): The rotation angles for the hop gates. final_orbital_rotation (np.ndarray): An optional final orbital rotation to append to the ansatz, used to optimize the orbital basis. .. _hop gates: ffsim.html#ffsim.apply_hop_gate .. _entanglement forging: https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.010309 """ norb: int interaction_pairs: list[tuple[int, int]] thetas: np.ndarray final_orbital_rotation: np.ndarray | None = None def _apply_unitary_( self, vec: np.ndarray, norb: int, nelec: int | tuple[int, int], copy: bool ) -> np.ndarray: """Apply the operator to a vector.""" if copy: vec = vec.copy() for target_orbs, theta in zip( itertools.cycle(self.interaction_pairs), self.thetas ): vec = apply_hop_gate( vec, theta, target_orbs=target_orbs, norb=norb, nelec=nelec, copy=False ) if self.final_orbital_rotation is not None: vec = apply_orbital_rotation( vec, mat=self.final_orbital_rotation, norb=norb, nelec=nelec, copy=False, ) return vec
[docs] def to_parameters(self) -> np.ndarray: """Convert the operator to a real-valued parameter vector.""" num_params = len(self.thetas) if self.final_orbital_rotation is not None: num_params += self.norb**2 params = np.zeros(num_params) params[: len(self.thetas)] = self.thetas if self.final_orbital_rotation is not None: params[len(self.thetas) :] = orbital_rotation_to_parameters( self.final_orbital_rotation ) return params
[docs] @staticmethod def from_parameters( params: np.ndarray, norb: int, interaction_pairs: list[tuple[int, int]], with_final_orbital_rotation: bool = False, ) -> HopGateAnsatzOperator: """Initialize the operator from a real-valued parameter vector. Args: params: The real-valued parameter vector. norb: The number of spatial orbitals. interaction_pairs: The orbital pairs to apply the hop gates to. with_final_orbital_rotation: Whether to include a final orbital rotation in the ansatz operator. """ final_orbital_rotation = None if with_final_orbital_rotation: final_orbital_rotation = orbital_rotation_from_parameters( params[-(norb**2) :], norb ) params = params[: -(norb**2)] return HopGateAnsatzOperator( norb=norb, interaction_pairs=interaction_pairs, thetas=params, final_orbital_rotation=final_orbital_rotation, )
def _approx_eq_(self, other, rtol: float, atol: float) -> bool: if isinstance(other, HopGateAnsatzOperator): if self.norb != other.norb: return False if self.interaction_pairs != other.interaction_pairs: return False if not np.allclose(self.thetas, other.thetas, rtol=rtol, atol=atol): return False if (self.final_orbital_rotation is None) != ( other.final_orbital_rotation is None ): return False if self.final_orbital_rotation is not None: return np.allclose( cast(np.ndarray, self.final_orbital_rotation), cast(np.ndarray, other.final_orbital_rotation), rtol=rtol, atol=atol, ) return True return NotImplemented